SAS-2015 the Symposium on Telescope Science

Total Page:16

File Type:pdf, Size:1020Kb

SAS-2015 the Symposium on Telescope Science Proceedings for the 34th Annual Conference of the Society for Astronomical Sciences SAS-2015 The Symposium on Telescope Science Editors: Robert K. Buchheim Jerry L. Foote Dale Mais June 11-13, 2015 Ontario, CA i Disclaimer The acceptance of a paper for the SAS Proceedings does not imply nor should it be inferred as an endorsement by the Society for Astronomical Sciences of any product, service, method, or results mentioned in the paper. The opinions expressed are those of the authors and may not reflect those of the Society for Astronomical Sciences, its members, or symposium sponsors Published by the Society for Astronomical Sciences, Inc. Rancho Cucamonga, CA First printing: May 2015 Photo Credits: Front Cover: NGC 2024 (Flame Nebula) and B33 (Horsehead Nebula) Alson Wong, Center for Solar System Studies Back Cover: Center for Solar System Studies (CS3) site, Landers, CA Robert D. Setphens, Center for Solar System Studies ii TABLE OF CONTENTS PREFACE v SYMPOSIUM SPONSORS vi SYMPOSIUM SCHEDULE vii PRESENTATION PAPERS ON THE SPIN AXIS DISTRIBUTION OF THE HUNGARIA ASTEROIDS 1 BRIAN D. WARNER THE UTILITY OF OUTER PLANET SPECTROSCOPY 11 STEVE HILL SPECTROSCOPIC OBSERVATION OF THE 2014 OCTOBER 8 TOTAL LUNAR ECLIPSE 21 RICHARD BERRY MATHEMATICAL FIT TO THE HEXAGON ON THE NORTH POLE OF SATURN 27 TOM BUCHANAN AMATEUR RADIO COMMUNICATION WITH A DEEP SPACE PROBE 35 BRIAN CUDNIK LIGHT EMITTING DIODES AND ASTRONOMICAL ENVIRONMENTS: RESULTS FROM IN 39 SITU ERIC CRAINE PHOTOMETRIC STANDARDS FOR NON-STANDARD FILTERS 47 JOHN HOOT CITIZEN CONTINENTAL-AMERICA TELESCOPIC ECLIPSE EXPERIMENT 63 MATT PENN TRIPLE PHOTOMETER: DESIGN AND INITIAL RESULTS 69 RICHARD STANTON AMATEUR OPTICAL SETI WITH A THREE BEAM COINCIDENT PHOTOMETER 79 BRUCE HOWARD VV CEPHEI ECLIPSE CAMPAIGN 2017/18 83 JEFF HOPKINS APPLE VALLEY DOUBLE STAR WORKSHOP 91 MARK BREWER SPECKLE INTERFEROMETRY WITH AMATEUR CLASS EQUIPMENT 97 RICHARD HARSHAW iii CONCERNING THE VIDEO DRIFT METHOD TO MEASURE DOUBLE STARS 109 RICHARD NUGENT MEASURING DOUBLE STARS WITH THE MODIFIED VIDEO DRIFT METHOD 117 ERNEST IVERSON OBSERVATION OF LARGE-DELTA-MAGNITUDE CLOSE BINARIES WITH SHAPED 125 APERTURE MASKS EDWARD L. FOLEY EVOLUTION OF AN ASTRONOMY RESEARCH SEMINAR 139 JO JOHNSON CHARACTERIZING SKY BRIGHTNESS VARIATIONS: FORT COLLINS, CO AND TUCSON, 149 AZ ROGER B. CULVER CITIZEN ASTRONOMERS...YESTERDAY, TODAY, AND TOMORROW 155 RON DILULIO THE ASTRO-1 SPACE TELESCOPE 161 JON MORSE ORION PROJECT STATUS REPORT 165 ALBERT STIEWING THE LARI EXPERIENCE - YOUNG STELLAR LIGHT CURVES 173 MICHAEL J. COOK A TECHNIQUE OF USING HIGH-RESOLUTION RADIAL VELOCITIES TO QUALIFY 191 SHORT-ARC BINARY STAR PAIR CANDIDATES WAYNE GREEN POSTER PAPERS HOW TO MEASURE THE MINIMA OF ECLIPSING BINARIES AND THE MAXIMA OF 199 RRLYRAE LAURENT CORP EXOPLANET PHOTOMETRY OF TRES-5B USING A DSLR CAMERA 203 MIKE MILLER iv PREFACE Welcome to the 34th annual Symposium of the Society for Astronomical Sciences! This year’s agenda reflects the broad diversity of interests among SAS participants, with papers covering photometry, spectroscopy, interferometry and astrometry; instruments ranging from eyeballs to CCDs and spectrographs to radios; and projects ranging from education to citizen-science to a variety of astronomical research targets. This year we also honor the memory of Lee Snyder, the long-time President of SAS, who died in March 2015. Lee was full of years, he was enjoyed and respected by many friends and collaborators, and he left a legacy that will live on. We will miss his enthusiasm, curiosity, and his predilection for corny jokes. Farewell, Lee – it was very good to have known you. It takes many people to have a successful conference, starting with the Program Committee. This year the regular committee members are: Robert Gill Robert D. Stephens Cindy Foote Jerry Foote Robert Buchheim Dale Mais Wayne Green We thank the staff and management of the Ontario Airport Hotel for their efforts to accommodate the Society and our activities. Membership dues and Registration fees do not fully cover the costs of the Society and the annual Symposium. We owe a great debt of gratitude to our corporate sponsors: Sky and Telescope, Woodland Hills Camera and Telescopes, PlaneWave Instruments, Santa Barbara Instruments Group/Cyanogen, and DC-3 Dreams. Thank you! Finally, there would be no Symposium without the speakers and poster presenters, the attentive audience, and the community of researchers and educators who apply their small telescopes to research activities. We thank all of you for making the SAS Symposium one of the premiere events for professional-amateur collaboration in astronomy. Robert K. Buchheim Jerry L. Foote Dale Mais 2015 May v Symposium Sponsors The Society for Astronomical Sciences thanks the following companies for their participation and financial support. Without them, this conference would not by possible. Sky & Telescope Magazine The Essential Magazine of Astronomy http://www.skyandtelescope.com/ DC3 Dreams Software Developers of ACP Observatory Control Software http://www.dc3.com/ PlaneWave Instruments Makers of the CDK line of telescopes http://www.planewaveinstruments.com/ Woodland Hills Camera & Telescopes Providing the best prices in astronomical products for more than 50 years http://www.telescopes.net/ SBIG Astronomical Instruments – Diffraction Limited Pioneers in the field of astronomical CCD imaging hardware and software http://www.sbig.com/ vi Symposium Schedule Time Subject Presenter/Author Thursday June 11: Workshops 0800 - 0900 Registration 0830 - 1200 Small-Telescope Spectroscopy Dr. John Bally lunch break 1330 - 1630 Speckle Interferometry Dr. Russ Genet & Dave Rowe Friday June 12: Technical Papers 8:00 Registration 8:30 Welcome Bob Buchheim 9:00 On The Spin Axis Distribution of the Hungaria Brian Warner Asteroids 9:20 The Utility of Outer Planet Spectroscopy Steve Hill 9:40 Transmission Spectra of Earth's Atmosphere Richard Berry 10:00 Mathematical Fit to the Hexagon on the North Tom Buchanan Pole of Saturn 10:20 –10:40 Coffee Break 10:40 Amateur Radio Communication with a Deep Brian Cudnik Space Probe 11:00 Light Emitting Diodes and Astronomical Eric Craine Environments: Results from in situ 11:20 Photometric Standards For Non-Standard Filters John Hoot 11:40 Citizen Continental-America Telescopic Eclipse Matt Penn Experiment noon – 14:00 Lunch Break 12:30 lunch Discussion group #1 (Main hall) the “Spectro-gang” 14:00 Triple Photometer -- Initial Results Richard Stanton 14:20 Amateur Optical SETI with a Three Beam Bruce Howard Coincident Photometer 14:40 VV Cephei Eclipse Campaign 2017/18 Jeff Hopkins 15:00 Sponsor Infomercials Dinner break 1900 “Evening with the Pros” Saturday June 13: Technical Papers (Astrometry & Campaigns) 8:15 Welcome Bob Buchheim 8:30 Apple Valley Double Star Workshop Mark Brewer 9:00 A high-resolution radial velocity study of short-arc Wayne Green binary star candidates 9:20 Student Work in Speckle Interferometry on Richard Harshaw Amateur Class Telescopes 9:40 Concerning the Video Drift Method to Measure Richard Nugent Double Stars 10:00 Measuring Double Stars with the Modified Video Ernest Iverson Drift Method 10:20 –10:40 Coffee Break 10:40 Evaluation of Shaped Aperture Masks Edward L. Foley 11:00 Evolution of an Astronomy Research Seminar Jo Johnson 11:20 Trends in Sky Brightness Variations: Fort Collins, Roger B. Culver CO and Tucson, AZ vii 11:40 Group Photo noon – 14:00 Lunch Break 12:30 lunch Discussion group #2 (Breakout Room) “wish list” for a commercial spectrograph 12:30 lunch discussion group #3 (Main Hall) the “photometry gang” 14:00 Citizen Science Ron DiIulio 14:20 The ASTRO-1 Space Telescope Jon Morse 14:40 Orion Project Status Report Albert Stiewing 15:00 The LARI Experience - Young Stellar Light Curves Michael J. Cook 15:20 Good Night and Good Luck 17:30 Banquet 19:00 Banquet Speaker Dr. John Bally viii Presentation Papers ix x Spin Axis Distribution of the Hungaria Asteroids via Lightcurve Inversion Brian D. Warner Center for Solar System Studies – Palmer Divide Station / MoreData! 446 Sycamore Ave. Eaton, CO 80615 [email protected] Robert D. Stephens (MoreData!), Daniel Coley Center for Solar System Studies Landers, CA Abstract In the past decade or so, the influence on small asteroids of the YORP (Yarkovsky-O'Keefe-Radzievskii- Paddack) effect, which is the asymmetric thermal emission of received sunlight, has been firmly established. The two strongest pieces of evidence are the nearly flat distribution of rotation rates of small asteroids and the distribution of spin axes (poles). YORP theory says that the spin axes, barring outside influences, are eventually forced to low obliquities, i.e., the poles are located near the north or south ecliptic poles. This would seem natural for objects with low orbital inclinations. However, for objects with high orbital inclinations, such as the Hungarias, there are some questions if this would still be the case. The authors and other observers have accumulated dense lightcurves of the Hungaria asteroids for more than a decade. The combination of these dense lightcurves and sparse data from asteroid search surveys has allowed using lightcurve inversion techniques to determine the spin axes for almost 75 Hungaria asteroids. The results confirm earlier works that show an anisotropic distribution of spin axes that favors the ecliptic poles and, as predicted for the Hungarias, a preponderance of retrograde rotators. 1. Introduction In addition to their role in the formation of the Solar System, the Hungarias have played a more In general, the Hungaria asteroids are a recent, critical role in a play whose plot timeline dynamical group within the commonly-defined inner extends from the early days of the Solar System to boundary of the main belt asteroids at 2 A.U, having millennia yet to come. orbital elements of 2. Shedding Some Light Semi-major axis: 1.78 < a < 2.0 AU Eccentricity: e < 0.18 The Hungaria have several characteristics that Inclination: 16 < i < 34° made them ideal for study, especially when using modest telescopes on the order of 0.2-0.5 m diameter.
Recommended publications
  • Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice
    Academic Reading in Science Copyright 2014 © Chris Elvin Copyright Notice Academic Reading in Science contains adaptations of Wikipedia copyrighted material. All pages containing these adaptations can be identified by the logo below; This logo is visible at the foot of every page in which Wikipedia articles have been adapted. Furthermore, all adaptations of Wikipedia sources show a URL at the foot of the article which you may use to access the original article. Pages which do not show the logo above are the copyright of the author Chris Elvin, and may not be used without permission. Creative Commons Deed You are free: to Share—to copy, distribute and transmit the work, and to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work.) Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copyright holder. Other Rights—In no way are any of the following rights affected by the license: your fair dealing or fair use rights; the author’s moral rights; and rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • The Catalina Sky Survey
    The Catalina Sky Survey Current Operaons and Future CapabiliKes Eric J. Christensen A. Boani, A. R. Gibbs, A. D. Grauer, R. E. Hill, J. A. Johnson, R. A. Kowalski, S. M. Larson, F. C. Shelly IAWN Steering CommiJee MeeKng. MPC, Boston, MA. Jan. 13-14 2014 Catalina Sky Survey • Supported by NASA NEOO Program • Based at the University of Arizona’s Lunar and Planetary Laboratory in Tucson, Arizona • Leader of the NEO discovery effort since 2004, responsible for ~65% of new discoveries (~46% of all NEO discoveries). Currently discovering NEOs at a rate of ~600/year. • 2 survey telescopes run by a staff of 8 (observers, socware developers, engineering support, PI) Current FaciliKes Mt. Bigelow, AZ Mt. Lemmon, AZ 0.7-m Schmidt 1.5-m reflector 8.2 sq. deg. FOV 1.2 sq. deg. FOV Vlim ~ 19.5 Vlim ~ 21.3 ~250 NEOs/year ~350 NEOs/year ReKred FaciliKes Siding Spring Observatory, Australia 0.5-m Uppsala Schmidt 4.2 sq. deg. FOV Vlim ~ 19.0 2004 – 2013 ~50 NEOs/year Was the only full-Kme NEO survey located in the Southern Hemisphere Notable discoveries include Great Comet McNaught (C/2006 P1), rediscovery of Apophis Upcoming FaciliKes Mt. Lemmon, AZ 1.0-m reflector 0.3 sq. deg. FOV 1.0 arcsec/pixel Operaonal 2014 – currently in commissioning Will be primarily used for confirmaon and follow-up of newly- discovered NEOs Will remove follow-up burden from CSS survey telescopes, increasing available survey Kme by 10-20% Increased FOV for both CSS survey telescopes 5.0 deg2 1.2 ~1,100/ G96 deg2 night 19.4 deg2 2 703 8.2 deg 2 ~4,300 deg per night New 10k x 10k cameras will increase the FOV of both survey telescopes by factors of 4x and 2.4x.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • 323 — 15 Nov 2019 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 323 — 15 Nov 2019 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 Abstracts of Newly Accepted Papers ........... 5 Editor: Bo Reipurth [email protected] Abstracts of Newly Accepted Major Reviews . 35 Associate Editor: Anna McLeod Dissertation Abstracts ........................ 36 [email protected] New Jobs ..................................... 39 Technical Editor: Hsi-Wei Yen Meetings ..................................... 40 [email protected] Summary of Upcoming Meetings ............. 42 Editorial Board New Books ................................... 44 Joao Alves Alan Boss Jerome Bouvier Lee Hartmann Cover Picture Thomas Henning Paul Ho The ρ Ophiuchi clouds are among the nearest star Jes Jorgensen forming regions. While it has been observed in Charles J. Lada great detail at almost all wavelengths, only wide- Thijs Kouwenhoven field astrophotography can capture its magnificent Michael R. Meyer appearance. Ralph Pudritz Luis Felipe Rodr´ıguez Image courtesy Adam Block Ewine van Dishoeck http://www.adamblockphotos.com Hans Zinnecker http://caelumobservatory.com The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation and molecular clouds. You can submit material for the following sections: Abstracts of recently Submitting your abstracts accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Latex macros for submitting abstracts views (not standard conference contributions), Dis- and dissertation abstracts (by e-mail to sertation Abstracts (presenting abstracts of new [email protected]) are appended to Ph.D dissertations), Meetings (announcing meet- each Call for Abstracts.
    [Show full text]
  • Arxiv:2012.11628V3 [Astro-Ph.EP] 26 Jan 2021
    manuscript submitted to JGR: Planets The Fundamental Connections Between the Solar System and Exoplanetary Science Stephen R. Kane1, Giada N. Arney2, Paul K. Byrne3, Paul A. Dalba1∗, Steven J. Desch4, Jonti Horner5, Noam R. Izenberg6, Kathleen E. Mandt6, Victoria S. Meadows7, Lynnae C. Quick8 1Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA 2Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA 4School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 5Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD 4350, Australia 6Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 7Department of Astronomy, University of Washington, Seattle, WA 98195, USA 8Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Key Points: • Exoplanetary science is rapidly expanding towards characterization of atmospheres and interiors. • Planetary science has similarly undergone rapid expansion of understanding plan- etary processes and evolution. • Effective studies of exoplanets require models and in-situ data derived from plan- etary science observations and exploration. arXiv:2012.11628v4 [astro-ph.EP] 8 Aug 2021 ∗NSF Astronomy and Astrophysics Postdoctoral Fellow Corresponding author: Stephen R. Kane, [email protected] {1{ manuscript submitted to JGR: Planets Abstract Over the past several decades, thousands of planets have been discovered outside of our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution.
    [Show full text]
  • Dynamical Dust Traps in Misaligned Circumbinary Discs: Analytical Theory and Numerical Simulations
    MNRAS 000,1–10 (2021) Preprint 24 March 2021 Compiled using MNRAS LATEX style file v3.0 Dynamical dust traps in misaligned circumbinary discs: analytical theory and numerical simulations Cristiano Longarini,1¢ Giuseppe Lodato,1 Claudia Toci1 and Hossam Aly2 1Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy 2Univ Lyon, Univ Claude Bernard Lyon 1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Recent observations have shown that circumbinary discs can be misaligned with respect to the binary orbital plane.The lack of spherical symmetry, together with the non-planar geometry of these systems, causes differential precession which might induce the propagation of warps. While gas dynamics in such environments is well understood, little is known about dusty discs. In this work, we analytically study the problem of dust traps formation in misaligned circumbinary discs. We find that pile-ups may be induced not by pressure maxima, as the usual dust traps, but by a difference in precession rates between the gas and dust. Indeed, this difference makes the radial drift inefficient in two locations, leading to the formation of two dust rings whose position depends on the system parameters. This phenomenon is likely to occur to marginally coupled dust particles ¹St & 1º as both the effect of gravitational and drag force are considerable. We then perform a suite of three-dimensional SPH numerical simulations to compare the results with our theoretical predictions. We explore the parameter space, varying stellar mass ratio, disc thickness, radial extension, and we find a general agreement with the analytical expectations.
    [Show full text]
  • An Early Warning System for Asteroid Impact
    An Early Warning System for Asteroid Impact John L. Tonry(1) ABSTRACT Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. It is not possible to detect all hazardous asteroids, and the efforts to detect them years before they strike are only advancing slowly. Similarly, ideas for mitigation of the danger from an impact by moving the asteroid are in their infancy. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. With enough warning, a small asteroid impact should not cause loss of life, and even portable property might be preserved. We describe an \early warning" system that could provide a week's notice of most sizeable asteroids or comets on track to hit the Earth. This may be all the mitigation needed or desired for small asteroids, and it can be implemented immediately for relatively low cost. This system, dubbed \Asteroid Terrestrial-impact Last Alert System" (AT- LAS), comprises two observatories separated by about 100 km that simulta- neously scan the visible sky twice a night. Software automatically registers a comparison with the unchanging sky and identifies everything which has moved or changed. Communications between the observatories lock down the orbits of anything approaching the Earth, within one night if its arrival is less than a week. The sensitivity of the system permits detection of 140 m asteroids (100 Mton impact energy) three weeks before impact, and 50 m asteroids a week be- fore arrival.
    [Show full text]
  • Martian Ice How One Neutrino Changed Astrophysics Remembering Two Former League Presidents
    Published by the Astronomical League Vol. 71, No. 3 June 2019 MARTIAN ICE HOW ONE NEUTRINO 7.20.69 CHANGED ASTROPHYSICS 5YEARS REMEMBERING TWO APOLLO 11 FORMER LEAGUE PRESIDENTS ONOMY T STR O T A H G E N P I E G O Contents N P I L R E B 4 . President’s Corner ASTRONOMY DAY Join a Tour This Year! 4 . All Things Astronomical 6 . Full Steam Ahead OCTOBER 5, From 37,000 feet above the Pacific Total Eclipse Flight: Chile 7 . Night Sky Network 2019 Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page Astronomy seeing up to 3¼ minutes of totality in a PAGE 4 9 . Wanderers in the Neighborhood dark sky that makes the Sun’s corona look Day Handbook full of ideas and incredibly dramatic. Our flight will de- 10 . Deep Sky Objects suggestions, go to: part from and return to Santiago, Chile. skyandtelescope.com/2019eclipseflight www.astroleague.org Click 12 . International Dark-Sky Association on "Astronomy Day” Scroll 14 . Fire & Ice: How One Neutrino down to "Free Astronomy Day African Stargazing Safari Join astronomer Stephen James ̃̃̃Changed a Field Handbook" O’Meara in wildlife-rich Botswana July 29–August 4, 2019 for evening stargazing and daytime PAGE 14 18 . Remembering Two Former For more information, contact: safari drives at three luxury field ̃̃̃Astronomical League Presidents Gary Tomlinson camps. Only 16 spaces available! Astronomy Day Coordinator Optional extension to Victoria Falls. 21 . Coming Events [email protected] skyandtelescope.com/botswana2019 22 . Gallery—Moon Shots 25 . Observing Awards Iceland Aurorae September 26–October 2, 2019 26 .
    [Show full text]
  • The Study of Astronomical Transients in the Infrared
    The Study of Astronomical Transients in the Infrared by Robert Strausbaugh A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved May 2019 by the Graduate Supervisory Committee: Nathaniel Butler, Chair Rolf Jansen Phillip Mauskopf Rogier Windhorst ARIZONA STATE UNIVERSITY August 2019 ©2019 Robert Strausbaugh All Rights Reserved ABSTRACT Several key, open questions in astrophysics can be tackled by searching for and mining large datasets for transient phenomena. The evolution of massive stars and compact objects can be studied over cosmic time by identifying supernovae (SNe) and gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling GRBs and their afterglows to probe the jets of GRBs can shed light on the emission mechanism, rate, and energetics of these events. In Chapter 1, I discuss the current state of astronomical transient study, including sources of interest, instrumentation, and data reduction techniques, with a focus on work in the infrared. In Chapter 2, I present original work published in the Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of this work include observing the exoplanet transit of HD189773B, and detecting the nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al. 2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence for a bright-edged jet.
    [Show full text]
  • Neofixer a Broker for Near Earth Asteroid Follow-Up Rob Seaman & Eric Christensen Catalina Sky Survey
    NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY Building the Infrastructure for Time-Domain Alert Science in the LSST Era • May 22-25, 2017 • Tucson CATALINA SKY SURVEY • LPL runs 2 NEO projects, CSS and SpacewatcH • Talk to Eric or me about CSS, Bob McMillan for SW • CSS demo at 3:30 pm CONGRESSIONAL MANDATE • Spaceguard goal: 1 km Near EartH Objects ✔ • George E Brown Act to find > 140m (H < 22) NEOs • 90% complete by 2020 ✘ (2017: ~ 30%) • ROSES 2017 language is > 100m • Chelyabinsk was ~20m (H ~ 25.8) or ~400 kiloton (few per century likeliHood) SUMMARY • Near EartH Asteroid inventory is “retail Big Data” • NEOfixer will be NEO-optimized targeting broker • No one broker will address all use cases • Will benefit LSST as well as current surveys • LSST not tasked to study NEOs, but ratHer tHe Solar System (slower objects and fartHer away) • What is tHe most valuable NEO observation a particular telescope can make at a particular time? CHESLEY & VERES (1705.06209) • 55 ± 5.0% for LSST baseline operating alone • But 42% of NEOs witH H < 22 will be discovered before 2022 • And witHout LSST, current surveys would discover 61% of the catalog by 2032 • Completion CH<22 will be 77% combined LSST will add 16% to CH<22 Can targeted follow-up increase this? CHESLEY & VERES (CAVEATS) • Lots of details worth reading • CH<22 degrades by ~1.8% for every 0.1 mag loss in sensitivity • Issues of linking efficiency including: • Efficiency down to H < 25 is lower • 4% false MBA-MBA links ASTROMETRIC
    [Show full text]
  • GW ORIONIS: a T-TAURI MULTIPLE SYSTEM OBSERVED with AU-SCALE RESOLUTION. J. P. Berger, Laboratoire D'astrophysique De Grenoble
    Protostars and Planets V 2005 8398.pdf GW ORIONIS: A T-TAURI MULTIPLE SYSTEM OBSERVED WITH AU-SCALE RESOLUTION. J. P.Berger, Laboratoire d’Astrophysique de Grenoble,, BP-53, F-38041 Grenoble Cedex, France,[email protected], J. Monnier, E. Pedretti, University of Michigan, , Ann Arbor, MI 48109-1090. USA , R. Millan-Gabet, California Institute of Technology, Pasadena, CA 91125, USA, F. Malbet, K. Perraut, P. Kern, M. Benisty, P. Haguenauer, Laboratoire d’Astrophysique de Grenoble, F-38041 Grenoble Cedex, France, P. Labeye, CEA-LETI 38054 Grenoble, Cedex, France, W. Traub, N. Carleton, M. Lacasse, Harvard Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA, S. Meimon, ONERA, Chatillon, France, C. Brechet, E. Thiebaut, CRAL, Lyon, France, P.Schloerb, University of Massachusetts at Amherst, Astronomy Department, Amherst, MA 01003, USA. GW Orionis is a well known single-line spectroscopic bi- 3 instrument which allows to measure simultaneously 3 vis- nary classified as a T Tauri star. The measured period is ≈ 242 ibilities and one closure phase (Monnier et al. 2004). The days. The stars are separated by ≈ 1.1AU and have a nearly addition of several measurements at different hour angle and circular orbit. The analysis of the residuals have revealed the two IOTA configuration allowed a map of the (u,v) plane suf- signature of a putative third companion with orbital period ficient to carry out the first reconstruction of an image of a T ≈ 1000 days. Tauri star with Astronomical Unit resolution (see Figure 1). The combination of spectroscopic measurements and spec- A detailed analysis of visibilities and closure phases is tral energy distribution modelization has lead Mathieu et al.(1991) however preferable if one is to quantify the system parameters to describe GW Orionis as a primary star surrounded with a cir- with a certain accuracy (see Figure 2).
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]