A Composite Biochemical System for Bacterial Nitrate and Nitrite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Terminal Oxidases of Paracoccus Denitrificans Gier, Jan-Willem L
University of Groningen The terminal oxidases of Paracoccus denitrificans Gier, Jan-Willem L. de; Lübben, Mathias; Reijnders, Willem N.M.; Tipker, Corinne A.; Slotboom, Dirk-Jan; Spanning, Rob J.M. van; Stouthamer, Adriaan H.; Oost, John van der Published in: Molecular Microbiology IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1994 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Gier, J-W. L. D., Lübben, M., Reijnders, W. N. M., Tipker, C. A., Slotboom, D-J., Spanning, R. J. M. V., Stouthamer, A. H., & Oost, J. V. D. (1994). The terminal oxidases of Paracoccus denitrificans. Molecular Microbiology, 13(2), 183-196. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Data Assimilation and Uncertainty Quantification in Cardiovascular Biomechanics Rajnesh Lal
Data assimilation and uncertainty quantification in cardiovascular biomechanics Rajnesh Lal To cite this version: Rajnesh Lal. Data assimilation and uncertainty quantification in cardiovascular biomechanics. Mod- eling and Simulation. Université Montpellier, 2017. English. NNT : 2017MONTS088. tel-02081644 HAL Id: tel-02081644 https://tel.archives-ouvertes.fr/tel-02081644 Submitted on 27 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Montpellier Préparée au sein de l’école doctorale I2S Et de l’unité de recherche IMAG Spécialité : Mathématiques et Modélisation Présentée par Rajnesh Lal Data assimilation and uncertainty quantification in cardiovascular biomechanics Soutenue le 14 Juin 2017 devant le jury composé de Pr. Franck Nicoud IMAG - Univ. de Montpellier Directeur Pr. Bijan Mohammadi IMAG - Univ. de Montpellier Co-Directeur Dr. Jean-Frédéric Gerbeau INRIA Paris - Rocquencourt Rapporteur Dr. Pierre-Yves Lagrée Université Pierre et Marie Curie Rapporteur PUPH. Vincent Costalat CHRU - Gui de Chauliac, Montpellier Examinateur Pr. Christophe Prud’homme IRMA - Université de Strasbourg Examinateur Abstract Cardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. ey offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. -
APP201895 APP201895__Appli
APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system. -
Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs. -
Carbon Assimilation and Carbohydrate Metabolism of ‘Concordʼ Grape (Vitis Labrusca L.) Leaves in Response to Nitrogen Supply
J. AMER. SOC. HORT. SCI. 128(5):754–760. 2003. Carbon Assimilation and Carbohydrate Metabolism of ‘Concordʼ Grape (Vitis labrusca L.) Leaves in Response to Nitrogen Supply Li-Song Chen1 and Lailiang Cheng2 Department of Horticulture, Cornell University, Ithaca, NY14853 ADDITIONAL INDEX WORDS. ADP-glucose pyrophosphorylase, fructose-1,6-bisphosphatase, metabolites, NADP-glyceral- dehyde-3-phosphate dehydrogenase, phosphoribulokinase, ribulose-1,5-bisphosphate carboxylase/oxygenase, sucrose phosphate synthase ABSTRACT. One-year-old grapevines (Vitis labrusca L. ‘Concordʼ) were supplied twice weekly for 5 weeks with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modifi ed Hoaglandʼs solution to generate a wide range of leaf N status. Both light-saturated CO2 assimilation at ambient CO2 and at saturating CO2 increased curvilinearly as leaf N increased. Although stoma- tal conductance showed a similar response to leaf N as CO2 assimilation, calculated intercellular CO2 concentrations decreased. On a leaf area basis, activities of key enzymes in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), and key enzymes in sucrose and starch synthesis, fructose-1,6-bisphosphatase (FBPase), sucrose phosphate synthase (SPS), and ADP-glucose pyrophosphorylase (AGPase), increased linearly with increasing leaf N content. When expressed on a leaf N basis, activities of the Calvin cycle enzymes increased with increasing leaf N, whereas activities of FBPase, SPS, and AGPase did not show signifi cant change. As leaf N increased, concentrations of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and 3-phosphoglycerate (PGA) increased curvilinearly. The ratio of G6P/F6P remained unchanged over the leaf N range except for a signifi cant drop at the lowest leaf N. -
Feeding, Digestion and Assimilation in Animals Macmillan Studies in Comparative Zoology
Feeding, Digestion and Assimilation in Animals Macmillan Studies in Comparative Zoology General Editors: J. B. Jennings and P. J. Mill, University of Leeds Each book in this series will discuss an aspect of modern zoology in a broad comparative fashion. In an age of increasing specialisation the editors feel that by illustrating the relevance of zoological principles in a general context this approach has an important role to play. As well as using a wide range of representative examples, each book will also deal with its subject from a number of different viewpoints, drawing its evidence from morphology, physiology and biochemistry. In this way the student can build up a complete picture of a particular zoological feature or process and gain an idea of its significance in a wide range of animals. Feeding, Digestion and Assimilation in Animals J. B. JENNINGS Reader in Invertebrate Zoology, The University of Leeds MACMILLAN EDUCATION © J. B. Jennings 1965, 1972 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission First published 1965 by The Pergamon Press Second edition 1972 Published by THE MACMILLAN PRESS LTD London and Basingstoke Associated companies in New rork Toronto Melbourne Dublin Johannesburg and Madras SBN 333 13391 9 (board) 333 13622 5 (paper) ISBN 978-0-333-13622-5 ISBN 978-1-349-15482-1 (eBook) DOI 10.1007/978-1-349-15482-1 Library of Congress catalog card number 72-90021 Preface THIS book is intended as a general introduction to the study of animal nutrition. -
Paracoccus Denitrificans Possesses Two Bior Homologs Having a Role In
ORIGINAL RESEARCH Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism Youjun Feng1, Ritesh Kumar2, Dmitry A. Ravcheev3 & Huimin Zhang1,* 1Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China 2Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 3Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 2, avenue de l’Universite, L-4365 Esch-sur-Alzette, Luxembourg. Keywords Abstract BioR, biotin, Paracoccus denitrificans. Recently, we determined that BioR, the GntR family of transcription factor, acts Correspondence as a repressor for biotin metabolism exclusively distributed in certain species of Youjun Feng, Department of Medical a-proteobacteria, including the zoonotic agent Brucella melitensis and the plant Microbiology & Parasitology, Zhejiang pathogen Agrobacterium tumefaciens. However, the scenario is unusual in Para- University School of Medicine (Zi-Jin-Gang coccus denitrificans, another closely related member of the same phylum a-proteo- Campus), No. 866, Yu-Hang-Tang Rd., bacteria featuring with denitrification. Not only does it encode two BioR Hangzhou City, Zhejiang 310058, China. Tel/Fax: +86 571 88208524; homologs Pden_1431 and Pden_2922 (designated as BioR1 and BioR2, respec- E-mail: [email protected]. tively), but also has six predictive BioR-recognizable sites (the two bioR homolog each has one site, whereas the two bio operons (bioBFDAGC and bioYB) each con- tains two tandem BioR boxes). It raised the possibility that unexpected complex- Funding Information ity is present in BioR-mediated biotin regulation. Here we report that this is the This work was supported by the Zhejiang case. The identity of the purified BioR proteins (BioR1 and BioR2) was confirmed Provincial Natural Science Foundation for with LC-QToF-MS. -
Copper Control of Bacterial Nitrous Oxide Emission and Its Impact on Vitamin B12-Dependent Metabolism
Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism Matthew J. Sullivan, Andrew J. Gates, Corinne Appia-Ayme1, Gary Rowley2, and David J. Richardson2 School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved October 21, 2013 (received for review July 31, 2013) Global agricultural emissions of the greenhouse gas nitrous oxide cultures leads to up-regulation of B12 independent anabolism, a (N2O) have increased by around 20% over the last 100 y, but reg- response indicative of destruction of the B12 pool by N2O. This ulation of these emissions and their impact on bacterial cellular cytotoxicity of N2O is relieved by the addition of exogenous B12. metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the bio- Results and Discussion chemistry of this process has been studied extensively in Paracoc- Impact of Cu-Limitation on Paracoccus denitrificans Transcription cus denitrificans. Here we demonstrate that expression of the gene Under Denitrifying Conditions. Paracoccus denitrificans was grown − encoding the nitrous oxide reductase (NosZ), which converts N2Oto under anaerobic batch culture conditions with NO3 as electron N2, is regulated in response to the extracellular copper concentra- acceptor in medium containing 13 μmol/L (Cu-H) and 0.5 μmol/L − tion. We show that elevated levels of N2O released as a consequence (Cu-L) copper. Under both culture conditions NO3 was con- of decreased cellular NosZ activity lead to the bacterium switching sumed in a growth-linked fashion, decreasing from ∼8 mmol to from vitamin B12-dependent to vitamin B12-independent biosyn- 0 mmol as the culture density increased (Fig. -
Out of Breath: Entrapping the Denitrifier Paracoccus Denitrificans in Anoxia and Rescuing It by Spikes of Oxygen
Master’s Thesis 2019 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Out of breath: entrapping the denitrifier Paracoccus denitrificans in anoxia and rescuing it by spikes of oxygen Kjetil Johnsen Hauge Master of Science, Biotechnology Out of breath: entrapping the denitrifier Paracoccus denitrificans in anoxia and rescuing it by spikes of oxygen Kjetil Johnsen Hauge Faculty of Biotechnology, Chemistry and Food Science Norwegian University of Life Sciences Ås, 2019 Acknowledgments This master thesis was the culmination of the master program for biotechnology I attended at the Norwegian University of Life Sciences (NMBU). The laboratory work and writing were performed at the Microbial Ecology and Physiology part of the NMBU Nitrogen group, at the faculty for Chemistry, Biotechnology and Food Science, and lasted from August of 2018 until December 2019. I thank my supervisor Lars Bakken for taking me on as a student and providing me with continuous and constructive feedback. This thesis would have been far poorer without your support. I would also like to thank the entirety of the NMBU Nitrogen group for support, particularly during my trial presentation, offering me valuable feedback. And also for lending me an office, offering me great support and great entertainment through our lunch break conversations. I thank Ricarda Kellerman, Pawel Lycus, Rannei Tjåland, Sebastian Thalmann and Linda Bergaust for offering support through the practical parts and data analysis of my experiments. I would like to thank my fellow students, particularly those who read parts of my master. I would finally thank my parents and my friends for their support through my thesis in specific, and my entire studies in general. -
Microbial Growth at Hyperaccelerations up to 403,627 × G
Microbial growth at hyperaccelerations up to 403,627 × g Shigeru Deguchi (出口 茂)a,1, Hirokazu Shimoshige (下重裕一)a,2, Mikiko Tsudome (津留美紀子)a, Sada-atsu Mukai (向井貞篤)a,b, Robert W. Corkeryc, Susumu Ito (伊藤 進)d, and Koki Horikoshi (掘越弘毅)a aInstitute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan; bInstitute for Advanced Study, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan; cInstitute for Surface Chemistry, 114 28 Stockholm, Sweden; and dDepartment of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihra, Okinawa 903-0213, Japan Edited by Henry J. Melosh, University of Arizona, Tucson, AZ, and approved March 15, 2011 (received for review December 19, 2010) It is well known that prokaryotic life can withstand extremes of Streptomyces clavuligerus, production of rapamycin by Strepto- temperature, pH, pressure, and radiation. Little is known about myces hygroscopicus, and production of microcin B17 by E. coli the proliferation of prokaryotic life under conditions of hyper- were suppressed during culturing in simulated microgravity, acceleration attributable to extreme gravity, however. We found whereas production of gramicidin S by Bacillus brevis was un- that living organisms can be surprisingly proliferative during affected (14, 18). S. enterica serovar Typhimurium showed en- hyperacceleration. In tests reported here, a variety of microorgan- hanced virulence in a murine infection model (19, 20) conducted fl isms, including Gram-negative Escherichia coli, Paracoccus denitri- in space ight and under modeled microgravity compared with ficans, and Shewanella amazonensis; Gram-positive Lactobacillus conditions of normal gravity (19, 20). These microorganisms also showed increased resistance to environmental stresses, increased delbrueckii; and eukaryotic Saccharomyces cerevisiae, were cul- fi tured while being subjected to hyperaccelerative conditions. -
Chapter 12 Assimilation of Mineral Nutrients
Chapter 12 Assimilation of Mineral Nutrients BIOL 5130/6130 Bob Locy Auburn University Chapter 12.01. Introduction - 01 Chapter 12.02. Nitrogen in the Environment - 02 02.01. Nitrogen passes through several forms in a biogeochemical cycle Chapter 12.02. Nitrogen in the Environment - 03 02.02. Unassimilated ammonium or nitrate may be dangerous – Although nitrate and ammonium are preferred nitrogen sources to support plant growth and development, both substances can be toxic at highlevels. – Ammonium ion dissipates the proton gradient – Nitrate can geneate toxic biproducts. Chapter 12.03. Nitrate Assimilation - 04 - + - + NO3 + NAD(P)H + H NO2 + NAD(P) + H20 03.01a. Many factors regulate nitrate reductase – Tight control of NR activity is required to keep toxic levels of nitrite from accumulating in cells – The induction of nitrate reductase activity is regulated transcriptionally by the control of NR mRNA levels. Chapter 12.03. Nitrate Assimilation - 05 03.01b. Many factors regulate nitrate reductase – Nitrate reductase activity is also regulated posttranslationally by a number of physiological parameters. – This control involves activating 14-3-3 protein, and phosphorylation of a serine residue in the hinge region of the protein between the MoCo and the heme. – Phosphorylation activates and dephosphorylation inhibits NR activity. Chapter 12.03. Nitrate Assimilation - 06 03.02. Nitrite reductase converts nitrite to ammonium - + + NO2 + 6 Fdred + 8 H NH4 + 6 Fdox + 2H20 – Nitrite derived from nitrate reductase is immediately taken up by choroplasts (in leaves) or plastids (in roots), where it is reduced to amonia by nitrite reductase (Nit) Chapter 12.03. Nitrate Assimilation - 07 03.03. Both roots and shoots assimilate nitrate – Varies from one species to another – GENERALLY – temperate species are root assimilators, tropical species are leaf assimilators Chapter 12.04. -
A Data Assimilative Marine Ecosystem Model of the Central Equatorial Pacific
Journalof MarineResearch, 59, 859– 894,2001 Adataassimilative marineecosystem modelof the central equatorialPaci c: Numerical twinexperiments byMarjorieA. M.Friedrichs 1 ABSTRACT Ave-component,data assimilative marine ecosystem model is developed for the high-nutrient low-chlorophyllregion of thecentral equatorial Paci c (0N,140W). Identical twin experiments, in whichmodel-generated synthetic ‘ data’are assimilated into the model, are employed to determine thefeasibility of improving simulation skill by assimilating in situ cruisedata (plankton, nutrients andprimary production) and remotely-sensed ocean color data. Simple data assimilative schemes suchas data insertion or nudging may be insuf cient for lower trophic level marine ecosystem models,since they require long time-series of daily to weekly plankton and nutrient data as wellas adequateknowledge of the governing ecosystem parameters. In contrast, the variational adjoint technique,which minimizes model-data mis ts byoptimizingtunable ecosystem parameters, holds muchpromise for assimilating biological data into marine ecosystem models. Using sampling strategiestypical of those employed during the U.S. JointGlobal Flux Study (JGOFS) equatorial Pacic processstudy and the remotely-sensed ocean color data available from the Sea-viewing Wide Field-of-viewSensor (SeaWiFS), parameters that characterize processes such as growth, grazing, mortality,and recycling can be estimated. Simulation skill is improved even if synthetic data associatedwith 40% random noise are assimilated; however, the presence of biases of 10 – 20% provesto be more detrimental to the assimilation results. Although increasing the length of the assimilatedtime series improves simulation skill if randomerrors are present in the data, simulation skillmay deterior ateas more biased data are assimilat ed.As biologic aldatasets, includin g in situ, satelliteand acoustic sources, continue to grow, data assimilat ivebiologic al-physical modelswill play an increasin glycrucial role in large interdis ciplinaryoceanogr aphicobserva- tionalprograms .