The Federal Ocean Acidification Research and Monitoring Act: H.R

Total Page:16

File Type:pdf, Size:1020Kb

The Federal Ocean Acidification Research and Monitoring Act: H.R THE FEDERAL OCEAN ACIDIFICATION RESEARCH AND MONITORING ACT: H.R. 4174 HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TENTH CONGRESS SECOND SESSION JUNE 5, 2008 Serial No. 110–106 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://www.science.house.gov U.S. GOVERNMENT PRINTING OFFICE 42–610PS WASHINGTON : 2008 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 C:\WORKD\E&E08\060508\42610 SCIENCE1 PsN: SCIENCE1 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chairman JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin MARK UDALL, Colorado LAMAR S. SMITH, Texas DAVID WU, Oregon DANA ROHRABACHER, California BRIAN BAIRD, Washington ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina VERNON J. EHLERS, Michigan DANIEL LIPINSKI, Illinois FRANK D. LUCAS, Oklahoma NICK LAMPSON, Texas JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri JERRY MCNERNEY, California JO BONNER, Alabama LAURA RICHARDSON, California TOM FEENEY, Florida PAUL KANJORSKI, Pennsylvania RANDY NEUGEBAUER, Texas DARLENE HOOLEY, Oregon BOB INGLIS, South Carolina STEVEN R. ROTHMAN, New Jersey DAVID G. REICHERT, Washington JIM MATHESON, Utah MICHAEL T. MCCAUL, Texas MIKE ROSS, Arkansas MARIO DIAZ-BALART, Florida BEN CHANDLER, Kentucky PHIL GINGREY, Georgia RUSS CARNAHAN, Missouri BRIAN P. BILBRAY, California CHARLIE MELANCON, Louisiana ADRIAN SMITH, Nebraska BARON P. HILL, Indiana PAUL C. BROUN, Georgia HARRY E. MITCHELL, Arizona CHARLES A. WILSON, Ohio ANDRE´ CARSON, Indiana SUBCOMMITTEE ON ENERGY AND ENVIRONMENT HON. NICK LAMPSON, Texas, Chairman JERRY F. COSTELLO, Illinois BOB INGLIS, South Carolina LYNN C. WOOLSEY, California ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri JERRY MCNERNEY, California RANDY NEUGEBAUER, Texas MARK UDALL, Colorado MICHAEL T. MCCAUL, Texas BRIAN BAIRD, Washington MARIO DIAZ-BALART, Florida PAUL KANJORSKI, Pennsylvania BART GORDON, Tennessee RALPH M. HALL, Texas JEAN FRUCI Democratic Staff Director CHRIS KING Democratic Professional Staff Member MICHELLE DALLAFIOR Democratic Professional Staff Member SHIMERE WILLIAMS Democratic Professional Staff Member ELAINE PAULIONIS PHELEN Democratic Professional Staff Member ADAM ROSENBERG Democratic Professional Staff Member ELIZABETH STACK Republican Professional Staff Member TARA ROTHSCHILD Republican Professional Staff Member STACEY STEEP Research Assistant (II) VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 C:\WORKD\E&E08\060508\42610 SCIENCE1 PsN: SCIENCE1 C O N T E N T S June 5, 2008 Page Witness List ............................................................................................................. 2 Hearing Charter ...................................................................................................... 3 Opening Statements Statement by Representative Nick Lampson, Chairman, Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives .................................................................................... 6 Written Statement ............................................................................................ 6 Statement by Representative Bob Inglis, Ranking Minority Member, Sub- committee on Energy and Environment, Committee on Science and Tech- nology, U.S. House of Representatives ............................................................... 7 Written Statement ............................................................................................ 7 Prepared Statement by Representative Jerry F. Costello, Member, Committee on Science and Technology, U.S. House of Representatives ............................. 8 Panel I: Hon. Jay Inslee, a Representative in Congress from the State of Washington Oral Statement ................................................................................................. 9 Discussion ................................................................................................................. 10 Panel II: Dr. Richard A. Feely, Supervisory Chemical Oceanographer, Pacific Marine Environmental Laboratory, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, U.S. Department of Commerce Oral Statement ................................................................................................. 13 Written Statement ............................................................................................ 15 Biography .......................................................................................................... 20 Dr. Joan A. Kleypas, Scientist, Institute for the Study of Society and Environ- ment, National Center for Atmospheric Research Oral Statement ................................................................................................. 20 Written Statement ............................................................................................ 22 Biography .......................................................................................................... 30 Dr. Scott C. Doney, Senior Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Oral Statement ................................................................................................. 34 Written Statement ............................................................................................ 35 Biography .......................................................................................................... 43 Dr. Ken Caldeira, Scientist, Department of Global Ecology, Carnegie Institu- tion of Washington Oral Statement ................................................................................................. 45 Written Statement ............................................................................................ 46 Biography .......................................................................................................... 48 Mr. Brad Warren, Director, Productive Oceans Partnership Program, Sustain- able Fisheries Partnership Oral Statement ................................................................................................. 55 Written Statement ............................................................................................ 59 (III) VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00003 Fmt 5904 Sfmt 5904 C:\WORKD\E&E08\060508\42610 SCIENCE1 PsN: SCIENCE1 IV Page Mr. Brad Warren, Director, Productive Oceans Partnership Program, Sustain- able Fisheries Partnership—Continued Biography .......................................................................................................... 61 Discussion Interagency Coordination .................................................................................... 61 Ocean Acidification Monitoring ........................................................................... 62 International Cooperation ................................................................................... 62 More on Interagency Coordination ..................................................................... 63 Ocean Acidification Models ................................................................................. 64 The Effect of Ocean Acidification on Calcifying Organisms ............................. 65 Mitigation of Ocean Acidification ....................................................................... 66 Comments on H.R. 4174 ...................................................................................... 68 Reducing or Reversing Ocean Acidification ....................................................... 72 An International Panel on Ocean Acidification ................................................. 74 Atmospheric Transport ........................................................................................ 75 More on Ocean Acidification Monitoring ............................................................ 76 Appendix: Additional Material for the Record Section-by-Section Analysis of H.R. 4174 .............................................................. 80 H.R. 4174, the Federal Ocean Acidification Research and Monitoring Act ........ 81 VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00004 Fmt 5904 Sfmt 5904 C:\WORKD\E&E08\060508\42610 SCIENCE1 PsN: SCIENCE1 THE FEDERAL OCEAN ACIDIFICATION RESEARCH AND MONITORING ACT: H.R. 4174 THURSDAY, JUNE 5, 2008 HOUSE OF REPRESENTATIVES, SUBCOMMITTEE ON ENERGY AND ENVIRONMENT, COMMITTEE ON SCIENCE AND TECHNOLOGY, Washington, DC. The Subcommittee met, pursuant to call, at 10:10 a.m., in Room 2318 of the Rayburn House Office Building, Hon. Nick Lampson [Chairman of the Subcommittee] presiding. (1) VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00005 Fmt 6633 Sfmt 6633 C:\WORKD\E&E08\060508\42610 SCIENCE1 PsN: SCIENCE1 2 VerDate 11-MAY-2000 11:41 Dec 12, 2008 Jkt 042610 PO 00000 Frm 00006 Fmt 6633 Sfmt 6602 C:\WORKD\E&E08\060508\42610 SCIENCE1
Recommended publications
  • Ken Caldeira
    Curriculum Vitae for Ken Caldeira PRESENT POSITION Senior Scientist Professor (by courtesy) Department of Global Ecology Department of Environmental Earth System Sciences Carnegie Institution Stanford University 260 Panama Street 450 Serra Mall Stanford, CA 94305 USA Stanford, California 94305 USA [email protected] [email protected] (650) 704-7212; fax: (650) 462-5968 EDUCATION Ph.D.,1991, New York University, Atmospheric Sciences, Department of Applied Science M.S.,1988, New York University, Atmospheric Sciences, Department of Applied Science B.A.,1978 Rutgers College, Philosophy PRIOR RESEARCH EXPERIENCE Physicist/Environmental Scientist (Lawrence Livermore National Laboratory, 1995 to 2005) Research ocean carbon cycle, atmospheric CO2, ocean/sea-ice physics, climate, and energy systems Post-Doctoral Researcher (Lawrence Livermore National Laboratory; 1993 to 1995) Research the ocean carbon cycle, atmospheric CO2 and climate NSF Earth Sciences Postdoctoral Fellow (Earth Systems Science Center & Dept. of Geosciences, The Pennsylvania State University; 1991 to 1993) Role of the carbonate-silicate cycle in long-term atmospheric CO2 content and climate GENERAL RESEARCH INTERESTS Ocean acidification; climate/carbon-cycle interactions; numerical simulation of climate and biogeochemistry; marine biogeochemical cycles; global carbon cycle; long-term evolution of climate and geochemical cycles; intentional intervention in the climate system; energy technology and policy ADVISORY PANELS / DISSERTATION COMMITTEES National Academy of Sciences,
    [Show full text]
  • Ken Caldeira
    Curriculum Vitae for Ken Caldeira PRESENT POSITION Senior Scientist Professor (by courtesy) Department of Global Ecology Department of Earth System Science Carnegie Institution Stanford University 260 Panama Street 450 Serra Mall Stanford, CA 94305 USA Stanford, California 94305 USA [email protected] [email protected] (650) 704-7212; fax: (650) 462-5968 EDUCATION Ph.D.,1991, New York University, Atmospheric Sciences, Department of Applied Science M.S.,1988, New York University, Atmospheric Sciences, Department of Applied Science B.A.,1978, Rutgers College, Philosophy PRIOR RESEARCH EXPERIENCE Physicist/Environmental Scientist (Lawrence Livermore National Laboratory, 1995 to 2005) Research ocean carbon cycle, atmospheric CO2, ocean/sea-ice physics, climate, and energy systems Post-Doctoral Researcher (Lawrence Livermore National Laboratory; 1993 to 1995) Research the ocean carbon cycle, atmospheric CO2 and climate NSF Earth Sciences Postdoctoral Fellow (Earth Systems Science Center & Dept. of Geosciences, The Pennsylvania State University; 1991 to 1993) Role of the carbonate-silicate cycle in long-term atmospheric CO2 content and climate GENERAL RESEARCH INTERESTS Ocean acidification; climate/carbon-cycle interactions; numerical simulation of climate and biogeochemistry; marine biogeochemical cycles; global carbon cycle; long-term evolution of climate and geochemical cycles; intentional intervention in the climate system; energy technology and policy ADVISORY PANELS / DISSERTATION COMMITTEES / ETC National Academy of Sciences, Geoengineering Climate Panel Member (2014) IPCC AR5 Report Climate Change 2013: The Physical Science Basis, Contributing Author (2013) Fellow of the American Geophysical Union (2010) National Academy of Sciences, America's Climate Choices Panel Member (2009) UK Royal Society Geoengineering Report Panel Member (2009) Global Carbon Project, Scientific Steering Committee Member (2009-2013) European Project on Ocean Acidification (EPOCA), Advisory Board Member (2008-2012) Intergovernmental Oceanographic Commission, Rep.
    [Show full text]
  • Carbon Budgetbudget 20092009 GCP-Carbon Budget2009 Contributors
    Budget09 released on 21 November 2010 ppt version 20 January 2011 CarbonCarbon BudgetBudget 20092009 GCP-Carbon Budget2009 Contributors Karen Assmann Peter E. Levy University of Bergen, Norway Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK Thomas A. Boden Sam Levis Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak National Centre for Atmospheric Research, Boulder, Co, USA Ridge, Tennessee USA Mark R. Lomas Gordon Bonan Department of Animal and Plant Sciences, University of Sheffield, U National Centre for Atmospheric Research, Boulder, CO, USA Joseph Majkut Laurent Bopp AOS Program, Princeton University, Princeton, New Jersey, USA Laboratoire des Sciences du Climat et de l’Environnement, UMR, CEA-CNRS- Nicolas Metzl UVSQ, France LOCEAN-IPSL, CNRS, Institut Pierre Simon Laplace, Université Pierre et Marie Erik Buitenhuis Curie, Paris, France School of Environment Sciences, University of East Anglia, Norwich, UK Corinne Le Quéré Ken Caldeira School of Environment Sciences, University of East Anglia, Norwich, UK Depart. of Global Ecology, Carnegie Institution of Washington, Stanford, USA British Antarctic Survey, Cambridge, UK Josep G. Canadell Andrew Lenton Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, CSIRO Marine and Atmospheric Research, Tasmania, Australia Australia Ivan Lima Philippe Ciais Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS- Gregg Marland UVSQ, France Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Thomas J. Conway Ridge, Tennessee, USA NOAA Earth System Research Laboratory, Boulder, Colorado, USA Glen P. Peters Steve Davis Center for International Climate and Environmental Research, Oslo, Norway Depart. of Global Ecology, Carnegie Institution of Washington, Stanford, USA Michael R.
    [Show full text]
  • Chemistry of the Oceans - Chen-Tung Arthur Chen
    OCEANOGRAPHY – Vol.I - Chemistry of the Oceans - Chen-Tung Arthur Chen CHEMISTRY OF THE OCEANS Chen-Tung Arthur Chen Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C. Keywords: Ωa, Ωc, alkalinity, anion, aragonite, bicarbonate, calcite, carbon, carbonate, CO2, colloids, conservative property, dielectric constant, euphotic zone, hydrogen bond, major elements, minor elements, nonconservative property, pCO2, pH, radionuclides, salinity, specific heat, surface tension, trace elements, viscosity. Contents 1. Introduction 2. General Chemistry of Seawater 3. Nutrients Cycling in the Oceans 4. Carbonate Chemistry of the Oceans 5. Natural and Anthropogenic Radionuclides 6. Human Perturbations 7. Non-Radioactive Ocean Pollution Glossary Bibliography Biographical Sketch Summary The oceans are filled with seawater which is mainly composed of water, a chemical compound composed of one oxygen and two hydrogen atoms. The polar nature of a water molecular, induced by a positive charge on the hydrogen side and a negative charge on the oxygen side, produces some unusual properties, one of the most important being water's remarkable ability to dissolve more substances than any other solvent. Although most solids and gases are soluble in water, the oceans are essentially in chemical equilibrium with as much material removed as that which enters every year. Each kilogram of typical seawater contains about 965 g water (857.8 g oxygen and 107.2 g hydrogen).UNESCO The major ions are chlo –ride EOLSS(18.98 g), sodium (10.56 g), sulfate (2.65 g), magnesium (1.27 g), calcium (0.40 g), potassium (0.38 g) and bicarbonate (0.14 g).
    [Show full text]
  • Perspectives on Chemical Oceanography in the 21St Century
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 2018 Perspectives on Chemical Oceanography in the 21st Century: Participants of the COME ABOARD Meeting Examine Aspects of the Field in the Context of 40 Years of DISCO Andrea J. Fassbender Hilary I. Palevsky Todd R. Martz Anitra E. Ingalls Martha Gledhill See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Environmental Chemistry Commons, and the Oceanography Commons Repository Citation Fassbender, Andrea J.; Palevsky, Hilary I.; Martz, Todd R.; Ingalls, Anitra E.; Gledhill, Martha; Fawcett, Sarah E.; Brandes, Jay A.; Aluwihare, Lihini I.; The aP rticipants of COME ABOARD; and DISCO XXV, "Perspectives on Chemical Oceanography in the 21st Century: Participants of the COME ABOARD Meeting Examine Aspects of the Field in the Context of 40 Years of DISCO" (2018). OEAS Faculty Publications. 343. https://digitalcommons.odu.edu/oeas_fac_pubs/343 Original Publication Citation Fassbender, A. J., Palevsky, H. I., Martz, T. R., Ingalls, A. E., Gledhill, M., Fawcett, S. E., . Aluwihare, L. I. (2017). Perspectives on chemical oceanography in the 21st century: Participants of the COME ABOARD meeting examine aspects of the field in the context of 40 years of DISCO. Marine Chemistry, 196, 181-190. doi: 10.1016/j.marchem.2017.09.002 Authors Andrea J. Fassbender, Hilary I. Palevsky, Todd R. Martz, Anitra E. Ingalls, Martha Gledhill, Sarah E. Fawcett, Jay A. Brandes, Lihini I. Aluwihare, The aP rticipants of COME ABOARD, and DISCO XXV This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/oeas_fac_pubs/343 Marine Chemistry 196 (2017) 181–190 Contents lists available at ScienceDirect Marine Chemistry ELSEVIER journal homepage: www.elsevier.com/locate/marchem Perspectives on Chemical Oceanography in the 21st century: Participants of CrossMark the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO ⁎ Andrea J.
    [Show full text]
  • When the Air Turns the Oceans Sour
    2200 pH value 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 Unfavorable prognosis: According to simulations of researchers at the Max Planck Institute in Hamburg, the pH value of the oceanic surface layer will be considerably lower in 2200 than in 1950, visible in the color shift within the area shown in red (left). The oceans are becoming more acidic. FOCUS_Geosciences When the Air Turns the Oceans Sour Human society has begun an ominous large-scale experiment, the full consequences of which will not be foreseeable for some time yet. Massive emissions of man-made carbon dioxide are heating up the Earth. But that’s not all: the increased concentration of this greenhouse gas in the atmosphere is also acidifying the oceans. Tatiana Ilyina and her staff at the Max Planck Institute for Meteorology in Hamburg are researching the consequences this could have. TEXT TIM SCHRÖDER hey’re called “sea butterflies” are warming the Earth like a green- because they float in the house. Less well known is the fact that ocean like a small winged the rising concentration of carbon diox- creature. However, pteropods ide in the atmosphere also leads to the belong to the gastropod class oceans slowly becoming more acidic. T of mollusks. They paddle through the This is because the oceans absorb a large water with shells as small as a baby’s portion of the carbon dioxide from the fingernail, and strangely transparent atmosphere. Put simply, the gas forms skin.
    [Show full text]
  • An Economic Anatomy of Optimal Climate Policy Faculty Research Working Paper Series
    An Economic Anatomy of Optimal Climate Policy Faculty Research Working Paper Series Juan B. Moreno-Cruz Georgia Institute of Technology Gernot Wagner Harvard John A. Paulson School of Engineering and Applied Sciences David W. Keith Harvard Kennedy School July 2017 Updated May 2018 RWP17-028 Visit the HKS Faculty Research Working Paper Series at: https://research.hks.harvard.edu/publications/workingpapers/Index.aspx The views expressed in the HKS Faculty Research Working Paper Series are those of the author(s) and do not necessarily reflect those of the John F. Kennedy School of Government or of Harvard University. Faculty Research Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate on important public policy challenges. Copyright belongs to the author(s). Papers may be downloaded for personal use only. www.hks.harvard.edu An Economic Anatomy of Optimal Climate Policy By Juan B. Moreno-Cruz, Gernot Wagner and David W. Keith∗ Draft: 8 May 2018 This paper introduces geoengineering into an optimal control model of climate change economics. Together with mitigation and adaptation, carbon and solar geoengineering span the universe of possible climate policies. Their wildly different characteristics have important implications for climate policy. We show in the context of our model that: (i) the optimal carbon tax equals the marginal cost of carbon geoengineering; (ii) the introduction of either form of geoengineering leads to higher emissions yet lower temperatures; (iii) in a world with above-optimal cumulative emissions, only a complete set of instruments can minimize climate damages.
    [Show full text]
  • Non-Radioactive Ocean Pollution - Chen-Tung Arthur Chen
    OCEANOGRAPHY – Vol.I - Non-Radioactive Ocean Pollution - Chen-Tung Arthur Chen NON-RADIOACTIVE OCEAN POLLUTION Chen-Tung Arthur Chen Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China. Keywords: ASEAN, dumping, emulsification, heavy metals, marine pollution, organic compounds, pesticides, pollution, resins, SEAPOL sewage, sludge, trace metals, United Nations Convention on the Law of the sea, UNDP, UNEP. Contents 1. Introduction 2. Trace Metals 3. Pesticides and Organic Compounds 4. Sewage 5. Temporal Trend Glossary Bibliography Biographical Sketch Summary The pollution of the marine environment has been a major focus of concern in the international community. To illustrate the seriousness of the problem, of the 320 articles of the United Nations Convention on the Law of the Sea, the very first addresses the issue of marine pollution. The most important sources of pollution and, thus, the major threat to the marine environment come from the land and this includes the continuous discharges through rivers, runoff, ocean outfalls and groundwater discharges. The marine environment in some areas, notably the enclosed and semi-enclosed seas surrounded by very dense populations, has large run-offs from rivers and sewers that contain fertilizers, detergents, pesticides and industrial wastes. Untreated sewage pouring into coastal waters directly, or via rivers or ocean outfalls, can carry hepatitis, cholera, typhoid and a wide rangeUNESCO of other diseases and infections –. Simply EOLSS said, in many coastal areas pollution has reached intolerable aesthetic, ecological and social levels. In the deep seas, tar balls on the surface, mercury in the tuna and the dumping of noxious wastes present problems although, surprisingly,SAMPLE usually less important CHAPTERS or critical than pollution from certain nutrients.
    [Show full text]
  • Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment
    Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mattauch, Linus, et al. "Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment." American Economic Review, 110, 4 (April 2020): 1231-37. As Published http://dx.doi.org/10.1257/aer.20190089 Publisher American Economic Association Version Final published version Citable link https://hdl.handle.net/1721.1/125321 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Economic Review 2020, 110(4): 1231–1237 https://doi.org/10.1257/aer.20190089 Steering the Climate System: Using Inertia to Lower the Cost of Policy: Comment† By Linus Mattauch, H. Damon Matthews, Richard Millar, Armon Rezai, Susan Solomon, and Frank Venmans* Lemoine and Rudik 2017 argues that it is efficient to delay reduc- ing carbon emissions(, due )to supposed inertia in the climate system’s response to emissions. This conclusion rests upon misunderstand- ing the relevant earth system modeling: there is no substantial lag between CO2 emissions and warming. Applying a representation of the earth system that captures the range of responses seen in complex earth system models invalidates the original article’s implications for climate policy. The least-cost policy path that limits warming to 2°C implies that the carbon price starts high and increases at the interest rate.
    [Show full text]
  • The Collaborative on Oceanography and Chemical Analysis (COCA) and Suggestions for Future Instrumental Analysis Methods in Chemical Oceanography
    The Collaborative on Oceanography and Chemical Analysis (COCA) and suggestions for future instrumental analysis methods in chemical oceanography COCA Working Group*1 *Corresponding author Chris Measures, Department of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI, 96822, USA. Tel +1 808-956-8693 Email: [email protected] 1 The members of the COCA Working group are listed in Appendix I Submitted to a special issue of Marine Chemistry June, 2014. Abstract The ability to make measurements accurately and precisely is the sine qua non of chemical oceanography. The development of theory and its transformation into modeling is completely dependant on the understanding gained through accurate measurements of oceanic properties. Chemical oceanographers, by making measurements of various chemical elements in ocean water, seek to discover, understand, and quantify ocean processes and use them in conjunction with other branches of oceanography to understand how the oceans interact with Earth system processes. We use this information to understand how the planetary biogeochemical systems affect and interact with the climate and use the chemical record in the sediments to understand how these systems operated in the past. With this knowledge we can build accurate models to predict responses to future climate forcing events. The primary inputs to chemical oceanography are dominantly provided by applied analytical chemistry. The construction of large networked observing systems and the development of a variety of autonomous vehicles have provided an unprecedented opportunity to study the ocean at spatial and temporal scales that have not been previously available to the ocean research community. However, as a result of power availability, mass and size constraints, and the limited ability to service instruments on these platforms, there are only a few parameters of interest to chemical oceanographers that can take advantage of this expensive infrastructure.
    [Show full text]
  • Marine Biogeochemical Cycling and Climate-Carbon Cycle Feedback
    Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-68 Manuscript under review for journal Geosci. Model Dev. Discussion started: 2 May 2018 c Author(s) 2018. CC BY 4.0 License. Marine biogeochemical cycling and climate-carbon cycle feedback simulated by the NUIST Earth System Model: NESM-2.0.1 Yifei Dai1, Long Cao2, Bin Wang1, 3 1 Earth System Modeling Center, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing 5 University of Information Science and technology, Nanjing 210044, China 2 Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China 3 Department of Atmospheric Sciences and Atmosphere-Ocean Research Center, University of Hawaii, Honolulu HI 96822, USA *Correspondence: [email protected] 10 Abstract. In this study, we evaluate the performance of Nanjing University of Information Science & Technology Earth System Model, version 2.0.1 (hereafter NESM-2.0.1). We focus on model simulated historical and future oceanic CO2 uptake, and analyze the effect of global warming on model-simulated oceanic CO2 uptake. Compared with available observations and data-based estimates, NESM-2.0.1 reproduces reasonably well large-scale ocean carbon-related fields, including nutrients (phosphate, nitrite and silicate), chlorophyll, and net primary production. However, some noticeable discrepancies between 15 model simulations and observations are found in the deep ocean and coastal regions. Model-simulated current-day oceanic CO2 uptake compares well with data-based estimate. From pre-industrial time to 2011, modeled cumulative CO2 uptake is 144 PgC, compared with data-based estimates of 155 ± 30 PgC.
    [Show full text]
  • 3.2 Ocean Deoxygenation from Eutrophication (Human Nutrient Inputs) Nancy N
    3.2 Ocean deoxygenation from eutrophication (human nutrient inputs) Nancy N. Rabalais, Ph.D. 3.2 Ocean deoxygenation from eutrophication (human nutrient inputs) Nancy N. Rabalais, Ph.D. Professor, Department of Oceanography and Coastal Sciences, Shell Oil Endowed Chair in Oceanography/Wetland Sciences, Louisiana State University, Room 3161, Energy, Coast and Environment Building, Baton Rouge, LA 70803 USA SECTION 3.2 SECTION Summary • Coastal deoxygenation is driven by excess human inputs of nitrogen and phosphorus that increase the production of carbon and its accumulation in the ecosystem. • Respiration of the excess carbon by bacteria results in oxygen deficient waters in stratified systems. • Deoxygenation reduces suitable habitats for many bottom-associated marine organisms and disrupts biogeochemical cycles. • Climate-driven increases in water temperature and increases in watershed precipitation will likely aggravate estuarine and coastal ocean deoxygenation. • Mitigation measures require social and political will but can be effective. Ocean deoxygenation: Everyone’s problem 117 3.2 Ocean deoxygenation from eutrophication (human nutrient inputs) Eutrophication-driven low oxygen Potential consequences Post-industrial expansion in the 1850s, • Enhanced phytoplankton production in estuaries and coastal waters and human alterations to watersheds, and accumulation of organic matter in the lower water column and sea bed. increasing use of artificial fertilizers in • Excessive algal biomass, which may be noxious or harmful the 1950s to
    [Show full text]