Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010–2020)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Synthesis of Molecules Containing Quaternary Stereogenic Centers Via the Intramolecular Asymmetric Heck Reaction
The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction Reported by Eric P. Gillis April 19, 2007 INTRODUCTION The enantioselective synthesis of compounds containing quaternary stereocenters continues to be a challenging endeavor and is a field of intense interest and development.1,,,,2 3 4 5 From the perspective of methods development, the asymmetric synthesis of compounds containing quaternary stereocenters poses a distinct challenge due to the sterically congested environment in which C-C bonds must be formed and stereochemical information must be transferred. Existing asymmetric methods have been applied successfully in desymmetrization processes that transform prochiral quaternary centers into stereodefined quaternary centers. However, for processes in which a quaternary stereocenter is created directly via a C-C bond forming reaction, only a few asymmetric reactions have been fruitful. The diversity in the array of methods that exist for the synthesis of compounds containing quaternary stereocenters is necessitated in part because of the number of distinct quaternary stereocenter architectures that are possible (Scheme 1). The construction of acyclic quaternary stereocenters is particularly challenging due to the number of degrees of freedom associated with these structures. However, promising results for the construction of these stereocenters via allylation,6 allylic alklyation,7 and Michael addition8 have been reported recently. For the synthesis of cyclic quaternary stereocenters a number of methods have been employed successfully including the intramolecular Heck reaction,9 alkylation,10 arylation,11 and Michael addition12. Fused bicyclic quaternary stereocenters are generally accessed via the desymmetrization of a prochiral quaternary center. In this regard, theoretically any SCHEME 1. -
Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur
molecules Review Rhodium-Catalyzed Synthesis of Organosulfur Compounds Involving S-S Bond Cleavage of Disulfides and Sulfur Mieko Arisawa * and Masahiko Yamaguchi Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-22-795-6814 Academic Editor: Bartolo Gabriele Received: 17 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Organosulfur compounds are widely used for the manufacture of drugs and materials, and their synthesis in general conventionally employs nucleophilic substitution reactions of thiolate anions formed from thiols and bases. To synthesize advanced functional organosulfur compounds, development of novel synthetic methods is an important task. We have been studying the synthesis of organosulfur compounds by transition-metal catalysis using disulfides and sulfur, which are easier to handle and less odiferous than thiols. In this article, we describe our development that rhodium complexes efficiently catalyze the cleavage of S-S bonds and transfer organothio groups to organic compounds, which provide diverse organosulfur compounds. The synthesis does not require use of bases or organometallic reagents; furthermore, it is reversible, involving chemical equilibria and interconversion reactions. Keywords: rhodium; catalysis; synthesis; organosulfur compounds; S-S bond cleavage; chemical equilibrium; reversible reaction 1. Introduction 1.1. Structure and Reactivity of Organic Disulfides Organosulfur compounds containing C-S bonds are widely used for the manufacture of drugs and materials. Compared with organic compounds containing oxygen, which is another group 16(6A) element, different properties appear owing to the large size and polarizability of sulfur atoms. -
B.Sc. III YEAR ORGANIC CHEMISTRY-III
BSCCH- 302 B.Sc. III YEAR ORGANIC CHEMISTRY-III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY ORGANIC CHEMISTRY-III BSCCH-302 BSCCH-302 ORGANIC CHEMISTRY III SCHOOL OF SCIENCES DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 ORGANIC CHEMISTRY-III BSCCH-302 Expert Committee Prof. B.S.Saraswat Prof. A.K. Pant Department of Chemistry Department of Chemistry Indira Gandhi National Open University G.B.Pant Agriculture, University Maidan Garhi, New Delhi Pantnagar Prof. A. B. Melkani Prof. Diwan S Rawat Department of Chemistry Department of Chemistry DSB Campus, Delhi University Kumaun University, Nainital Delhi Dr. Hemant Kandpal Dr. Charu Pant Assistant Professor Academic Consultant School of Health Science Department of Chemistry Uttarakhand Open University, Haldwani Uttarakhand Open University, Board of Studies Prof. A.B. Melkani Prof. G.C. Shah Department of Chemistry Department of Chemistry DSB Campus, Kumaun University SSJ Campus, Kumaun University Nainital Nainital Prof. R.D.Kaushik Prof. P.D.Pant Department of Chemistry Director I/C, School of Sciences Gurukul Kangri Vishwavidyalaya Uttarakhand Open University Haridwar Haldwani Dr. Shalini Singh Dr. Charu Pant Assistant Professor Academic Consultant Department of Chemistry Department of Chemistry School of Sciences School of Science Uttarakhand Open University, Haldwani Uttarakhand Open University, Programme Coordinator Dr. Shalini Singh Assistant Professor Department of Chemistry Uttarakhand Open University Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 ORGANIC CHEMISTRY-III BSCCH-302 Unit Written By Unit No. Dr. Charu Pant 01, 02 & 03 Department of Chemistry Uttarakhand Open University Haldwani Dr. -
Heterocyclic Chemistry Updated
1 | Page Heterocyclic Chemistry By Dr Vipul Kataria Definition: A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements (N, O, S, P) as members of its ring. Introduction: Heterocyclic compounds may be defined as cyclic compounds having as ring members atoms of at least two different elements. It means the cyclic compound has one another atom different than carbon. Heterocyclic compounds have much importance in organic chemistry because of abundant presence of heterocyclic compounds in present pharmaceutical drugs. Like other organic compounds, there are several defined rules for naming heterocyclic compounds. IUPAC rules for nomenclature of heterocyclic systems (SPU 2012, 2 Marks) The system for nomenclature for heterocyclic systems was given by Hantzsch and Widman. The Hantzsch-Widman nomenclature is based on the type (Z) of the heteroatom; the ring size (n) and nature of the ring, whether it is saturated or unsaturated. This system of nomenclature applies to monocyclic 3-to-10-membered ring heterocycles. Type of the heteroatom: The type of heteroatom is indicated by a prefix as shown below for common hetreroatoms. Dr Vipul Kataria, Chemistry Department, V. P. & R. P. T. P. Science College, VV Nagar 2 | Pag e When two or more of the same heteroatoms are present, the prrefix di, tri, tetra… are used. e.g. dioxa, triaza, dithia. If the heteroatoms are different their atomic number in that grroup is considered. Thus order of numbering will be O, S, N, P, Si. Ring size: The ring size is indicated by a suffix according to Table I below. -
Heterocyclic Compounds with Biological Meaning
Heterocyclic compounds with biological meaning 1 Heterocyclic compounds Cyclic, organic compounds which besides carbon atoms have one or more heteroatom (other elements than C). Heterocyclic atoms: – nitrogen, N – sulphur, S – oxygen, O – phosphorus, P – barium, Ba – zinc, Zn – silicon, Si. 2 Heterocyclic compounds From the biological point of view, the most important are heterocyclic compounds with 5- and 6-membered rings, containing: S, N, O. Most of the heterocyclic compounds have their common names. Substituent’s position in the ring is described by : – number – position of heteroatom – no. 1 – Greek letter – describes carbon atom the closest to heteroatom as a, then β and γ, respectively. 3 Heterocyclic compounds Heterocyclic compounds are: • widespread in nature • biologically active • some of them are toxic (e.g. coniine, coumarin and derivatives). Occurrence in: • natural dyes - heme, chlorophyll • alkaloids – atropine and nicotine • amino acids such as tryptophan and histidine • enzymes, nucleoproteins, antibiotics • vitamins • many synthetic pharmaceuticals. 4 Heterocyclic compounds Aromatic character of heteroatom-containing ring comes from aromatic sextet which consists of: • „not bound” electron pairs of heteroatoms • four electrons π from carbon atoms Pyrrole Furane Thiophen 5 5- membered ring heterocyclic compounds with one heteroatom 5-membered rings: • contain mostly oxygen, sulphur and nitrogen • are flat • are aromatic 6 5- membered ring heterocyclic compounds with two heteroatoms oxazole imidazole thiazole pyrazole 7 5- membered ring heterocyclic compounds With one heteroatom With two heteroatoms Condensation products with benzene 8 Pyrrole and derivatives • Pyrrole derivatives: • pyrroline • pyrrolidone • proline, • Hydroksyproline. • Condensation’s products of pyrrole with benzene: – indole, – tryptophan, – serotonin. • Condensation’s products of pyrrole with formaldehyde: – heme – hemoglobin – billirubin – porphyrins – Biliverdin. -
New Chiral Auxiliaries for the [3+2]-Cycloaddition of Nonstabilised Azomethine Ylides
New Chiral Auxiliaries For The [3+2]-Cycloaddition Of Nonstabilised Azomethine Ylides Allan Rostrup Forup Jensen A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Christopher Ingold Laboratories University College London London 20 Gordon Street WC1H OAJ ProQuest Number: 10610918 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10610918 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 /\cjmowieugemenis First and foremost I wish to thank my supervisor, Professor K. J. Hale, for the constant support, encouragement and guidance he has provided throughout the duration of this project. I also wish to take this opportunity to thank my sponsor, Rhone- Poulenc-Rorer, without whom this project would not have been possible. I also wish to thank past and present members of the Hale group for their friendship and encouragement. In particular, Dr. J. Cai was an invaluable help and inspiration. For their friendship and enormous support through good and bad times, Rukpong Tupprasoot, Neha Jogiya, Andrew Calabrese, Dr. Gurpreet Bhatia, Marc Hummersone, Rafaqat Hussain, also deserve to be mentioned. -
Synthesis of Heterocyclic Compounds and Its Applications
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Arabian Journal of Chemistry (2015) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Synthesis of heterocyclic compounds and its applications Mohan N. Patel *, Parag S. Karia, Pankajkumar A. Vekariya, Anshul P. Patidar Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India Received 28 February 2015; accepted 26 June 2015 KEYWORDS n n Abstract The octahedral ruthenium(II) complexes [Ru(L )(PPh3)2Cl2][L= biphenyl furanyl Heterocyclic compound; pyridine derivatives] were synthesized and characterized using LC–MS, IR spectroscopy, elemental Ruthenium(II) complexes; analysis and magnetic measurements. Complexes show enhancement in antibacterial activity Nucleic acid intercalating compared to free ligands. From the binding mode investigation by absorption titration and agent; viscosity measurement, it is observed that complexes bind to DNA via intercalation and also Cytotoxicity complexes promote the cleavage of supercoiled pUC19 plasmid DNA. Cytotoxicity analysis shows 100% mortality of Brine shrimp after 48 h. ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction containing planar polycyclic hetero aromatic ligands (Ji et al., 2001). Studies on DNA-binding of the complexes are Recently, metal complexes as DNA interacting agents have crucial in development of nucleic acid interaction, chemother- been talk in medicinal inorganic chemistry (Fei et al., 2014; apy and photodynamic treatment (Huppert, 2008; Zhao et al., 2011; Abou-Hussen and Linert, 2009; Patel, Balasubramanian and Neidle, 2009; Georgiades et al., 2010). -
Heterocyclic Compou Review Cyclic Compounds and Its Biological
Original Article Heterocyclic compou nds and its biological activity a review Kedar Nathrao A Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Abstract Heterocyclic compounds are of particular interest in medicinal chemistry. The chemistry of heterocyclic compounds is one of the most complex branches of chemistry. It is equally interesting for its theoretical implication for the diversity of its synthetic procedure and for the physiological and industrial significances. More than 90% of new dru ges contain heterocycles and the interface between chemistry and biology, at which so much new scientific insight, discovery and application is taking place is crossed by hetrocyclic compounds. This review article covers the most active hetrocycles that ha ve shown considerable biological action as antifungal, anti -inflammatory antibacterial, anticonvulsant, antiallergic, herbicidal, anticancer activity. Majority of the large number of drugs being introduced in pharmacopeias every year are heterocyclic compounds. Keywords: Heterocyclic, biological activities. *Address for Correspondence: Dr. Kedar Nathrao A, Department of Chemistry, Dayanand Science College Latur -413512, Maharashtra, INDIA. Email: [email protected] Received Date: 25/05/2016 Revised Date: 12/0 6/2016 Accepted Date: 08/07/2016 therapeutically significant molecular sections, the Access this article online pharamacophores, the portion that can be deleted are of no interest as components of drug action; they are Quick Response Code: Website: regarded as the result of biosynthetic efforts on the parent www.statperson.com organism to construct materials for its own mateboli c or defensive purposes. Few heterocyclic compounds containing the five-membered oxadiazole nucleus possess 1,3,4 a diversity of us eful biological effects. -
Heterocyclic Compound –A Review
IOSR Journal of Applied Chemistry (IOSR-JAC) ISSN: 2278-5736, PP 43-46 www.iosrjournals.org Heterocyclic Compound –A Review Shital V. Hote 1, Shital P. Bhoyar2 1, 2 Department of Applied Chemistry, Shri Datta Meghe Polytechnic, Nagpur, India ABSTRACT : Main aim of this paper is to present the information regarding the Heterocyclic compounds that constitute the largest family of organic compounds. These are extremely important with wide array of synthetic, pharmaceutical and industrial applications. There is always a strong need for new and efficient processes in synthesizing of new Heterocycles. Several 1,3,4,5-tetraaryl-2 pyrazoline, 41 –piperazine, 3- methoxybenzofuran and thiazolidin-4-one substituted 1, 2, 4-triazole, 4- NO2, 2-OH and 4-Cl in phenyl ring at 5- position of pyrazoline ring of synthesized compounds. The new compounds were characterized using IR, 1H-NMR, 13C-NMR and mass spectra. Biological screening of some compounds is reported. Keywords: Synthesized compounds, heterocyclic substances. I. INTRODUCTION Compounds classified as heterocyclic probably constitute the largest and most varied family of organic compounds. After all, every carbocyclic compound, regardless of structure and functionality, may in principle be converted into a collection of heterocyclic analogs by replacing one or more of the ring carbon atoms with a different element. Even if we restrict our consideration to oxygen, nitrogen and sulfur (the most common heterocyclic elements), the permutations and combinations of such a replacement are numerous. Derivatives of the simple fused ring heterocycle purine constitute an especially important and abundant family of natural products. The amino compounds adenine and guanine are two of the complementary bases that are essential components of DNA. -
Colorimetric Determination of Indole Using 2,4,6-Trimethoxybenzaldehyde
International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-2, February 2016 Colorimetric Determination of Indole using 2,4,6-trimethoxybenzaldehyde Wafaa M. Yousef, Saad A.Al-Tamrah, Basmah H. Al-Shammari 4 3 Abstract— Indole is an aromatic heterocyclic organic 5 compound. The indole nucleus is very important for many 2 6 N N + N1 natural and synthetic molecules with significant biological 7 H H activity. Compounds that contain an indole ring are called H indoles. Indoles are an important class of heterocycles not only Indole Canonical because they are among the most ubiquitous compounds in nature, but also because they have a wide range of biological Indole, a secondary amine, is a natural product of pancreatic activities. 2,4,6-Trimethoxybenzaldehyde can be used as digestion, bacterial action and putrefaction decomposition. antibacterial synergist. When indole was mixed with Indole is the precursor to many pharmaceuticals. The name 2,4,6-trimethoxybenzaldehyde at room temperature, no color indole is portmanteau of the words indigo and oleum, since was observed. However in the presence of concentrated indole was first isolated by treatment of the indigo dye with hydrochloric acid, a brown red complex is formed which has a oleum. Indole chemistry began with the study of the dye maximum absorbance at 488 nm. The parameters affecting this indigo. The indole ring is also found in many natural products reaction were studied in order to find the suitable conditions for such as the vinca alkaloids, fungal metabolites and marine the reaction to complete. The effect of the acid concentration, the natural products [2]. -
Diphosphine Complexes on Alpo4-Sepiolite Supports
catalysts Article Hydrogenation of α,β-Unsaturated Carbonyl Compounds over Covalently Heterogenized Ru(II) Diphosphine Complexes on AlPO4-Sepiolite Supports Verónica Caballero 1, Rafael Estevez 1, Diego Luna 1,* , Felipa M. Bautista 1 , Antonio A. Romero 1 , Laura Aguado-Deblas 1 , Jesús Hidalgo-Carrillo 1 and Isabel Romero 2 1 Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain; [email protected] (V.C.); [email protected] (R.E.); [email protected] (F.M.B.); [email protected] (A.A.R.); [email protected] (L.A.-D.); [email protected] (J.H.-C.) 2 Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-957212065 Abstract: In this work, the covalent immobilization of two ruthenium(II) complexes, II II i.e., [Ru Cl (bpea){(S)(-)(BINAP)}](BF4), 1, and [Ru Cl(bpea)(DPPE)](BF4), 2, where BINAP = 2,2’- bis(diphenylphosphino)-1,1’-binaphthyl and DPPE = 1,2-bis(diphenylphosphino)ethane, have been obtained (AlPO4-Sepiolite@1 and AlPO4-Sepiolite@2) by using a N-tridentate ligand N,N-bis-(2- pyridylmethyl)ethylamine (bpea), linked to an amorphous AlPO4-Sepiolite (20/80) inorganic support. Citation: Caballero, V.; Estevez, R.; This AlPO4-sepiolite support is able to immobilize the double amount of ruthenium complex (1.65%) Luna, D.; Bautista, F.M.; Romero, than the amorphous AlPO4 (0.89%). Both heterogenized complexes have been assessed as catalysts A.A.; Aguado-Deblas, L.; in the liquid phase hydrogenation of several substrates with carbonyl and/or olefinic double bonds Hidalgo-Carrillo, J.; Romero, I. -
Recent Advances of BINAP Chemistry in the Industrial Aspects
NEW TOOLS IN SYNTHESIS 1055 Recent Advances of BINAP Chemistry in the Industrial Aspects Hidenori Kumobayashi, Takashi Miura,* Noboru Sayo, Takao Saito, Xiaoyong Zhang Central Research Laboratory, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka, Kanagawa 254-0073, Japan Fax (0463)25-2084; E-mail: [email protected] Received 24 April 2001 and ketones such as a-(acylamino)acrylic acids,6 enam- Abstract: New efficient synthetic methods of optically active BI- 7 8 ides, a,b-unsaturated carboxylic acids, allylic and ho- NAP [BINAP = 2,2’-bis(diphenylphosphino)-1,1’-binaphthyl] and 9 10 its variants are described. Application of these BINAP variants in moallylic alcohols, alkylidene lactones, alkenyl 10 11 12 asymmetric catalytic hydrogenation of prochiral ketones and olefins ethers, b-keto esters, b-hydroxyketones, and b-ami- to various industrially important compounds is discussed. noketones.12 Key words: BINAP ligands, ruthenium and iridium catalysts, Starting with the development of l-menthol process using asymmetric hydrogenation, ketones, unsaturated carboxylic acids BINAP–Rh catalyzed asymmetric isomerization of allyl- amines,5a we have been investigating catalytic asymmet- ric synthesis mainly based on BINAP chemistry for two Introduction decades and have developed various asymmetric synthet- ic processes. All of these results are based on the success Enantioselective syntheses have been gaining more and of the marvelous abilities of the BINAP ligands. Recently more importance in a wide range of fields such as pharma- the targets of asymmetric synthesis have become varied ceuticals, agrochemicals, food additives, aromachemicals and complicated, while BINAP sometimes shows its lim- and functional materials because the biological activities itation.