POLYHEDRON a Polyhedron (Plural Polyhedra Or Polyhedrons) Is A

Total Page:16

File Type:pdf, Size:1020Kb

POLYHEDRON a Polyhedron (Plural Polyhedra Or Polyhedrons) Is A POLYHEDRON A polyhedron (plural polyhedra or polyhedrons) is a geometric solid in three dimensions with flat faces and straight edges. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- (stem of πολύς, "many") + -edron (form of έδρα, "base", "seat", or "face"). Defining a polyhedron as a solid bounded by flat faces and straight edges is not very precise and, to a modern mathematician, quite unsatisfactory. Grünbaum (1994, p. 43) observed, "The Original Sin in the theory of polyhedra goes back to Euclid, and through Kepler, Poinsot, Cauchy and many others ... [in that] at each stage ... the writers failed to define what are the 'polyhedra' ...." Since then rigorous definitions of "polyhedron" have been given within particular contexts. However such definitions are seldom compatible in other contexts. a.) Basis for definition Any polyhedron can be built up from different kinds of element or entity, each associated with a different number of dimensions: 3 dimensions: The body is bounded by the faces, and is usually the volume enclosed by them. 2 dimensions: A face is a polygon bounded by a circuit of edges, and usually including the flat (plane) region inside the boundary. These polygonal faces together make up the polyhedral surface. 1 dimension: An edge joins one vertex to another and one face to another, and is usually a line segment. The edges together make up the polyhedral skeleton. 0 dimensions: A vertex (plural vertices) is a corner point. -1 dimension: The null polytope is a kind of non-entity required by abstract theories. More generally in mathematics and other disciplines, "polyhedron" is used to refer to a variety of related constructs, some geometric and others purely algebraic or abstract. A defining characteristic of almost all kinds of polyhedra is that just two faces join along any common edge. This ensures that the polyhedral surface is continuously connected and does not end abruptly or split off in different directions. A polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. b.) Characteristics i. Names of polyhedral - Polyhedra are often named according to the number of faces. The naming system is again based on Classical Greek, for example tetrahedron (4), pentahedron (5), hexahedron (6), heptahedron (7), triacontahedron (30), and so on. - Often this is qualified by a description of the kinds of faces present, for example the Rhombic dodecahedron vs. the Pentagonal dodecahedron. - Other common names indicate that some operation has been performed on a simpler polyhedron, for example the truncated cube looks like a cube with its corners cut off, and has 14 faces (so it is also an example of a tetrakaidecahedron). - Some special polyhedra have grown their own names over the years, such as Miller's monster or the Szilassi polyhedron. ii. Edges - Edges have two important characteristics (unless the polyhedron is complex): An edge joins just two vertices. An edge joins just two faces. - These two characteristics are dual to each other. iii. Euler characteristic - The Euler characteristic χ relates the number of vertices V, edges E, and faces F of a polyhedron: - For a simply connected polyhedron, χ = 2. For a detailed discussion, see Proofs and Refutations by Imre Lakatos. iv. Orientability - Some polyhedra, such as all convex polyhedra, have two distinct sides to their surface, for example one side can consistently be coloured black and the other white. We say that the figure is orientable. - But for some polyhedra this is not possible, and the figure is said to be non- orientable. All polyhedra with odd-numbered Euler characteristic are non- orientable. A given figure with even χ < 2 may or may not be orientable. v. Vertex figure - For every vertex one can define a vertex figure, which describes the local structure of the figure around the vertex. If the vertex figure is a regular polygon, then the vertex itself is said to be regular. vi. Duality - For every polyhedron there exists a dual polyhedron having: faces in place of the original's vertices and vice versa, the same number of edges the same Euler characteristic and orientability The dual of a convex polyhedron can be obtained by the process of polar reciprocation. vii. Volume - The volume of an orientable polyhedron having an identifiable centroid can be calculated using Green's theorem: by choosing the function where (x,y,z) is the centroid of the surface enclosing the volume under consideration. As we have, Hence the volume can be calculated as: where the normal of the surface pointing outwards is given by: The final expression can be written as where S is the surface area of the polyhedron. SOME POLYHEDRAL Dodecahedron Small stellated dodecahedron (Regular polyhedron) (Regular star) Icosidodecahedron Great cubicuboctahedron (Uniform) (Uniform star) Rhombic triacontahedron Elongated pentagonal cupola (Uniform dual) (Convex regular-faced) Octagonal prism Square antiprism (Uniform prism) (Uniform antiprism) .
Recommended publications
  • Equivelar Octahedron of Genus 3 in 3-Space
    Equivelar octahedron of genus 3 in 3-space Ruslan Mizhaev ([email protected]) Apr. 2020 ABSTRACT . Building up a toroidal polyhedron of genus 3, consisting of 8 nine-sided faces, is given. From the point of view of topology, a polyhedron can be considered as an embedding of a cubic graph with 24 vertices and 36 edges in a surface of genus 3. This polyhedron is a contender for the maximal genus among octahedrons in 3-space. 1. Introduction This solution can be attributed to the problem of determining the maximal genus of polyhedra with the number of faces - . As is known, at least 7 faces are required for a polyhedron of genus = 1 . For cases ≥ 8 , there are currently few examples. If all faces of the toroidal polyhedron are – gons and all vertices are q-valence ( ≥ 3), such polyhedral are called either locally regular or simply equivelar [1]. The characteristics of polyhedra are abbreviated as , ; [1]. 2. Polyhedron {9, 3; 3} V1. The paper considers building up a polyhedron 9, 3; 3 in 3-space. The faces of a polyhedron are non- convex flat 9-gons without self-intersections. The polyhedron is symmetric when rotated through 1804 around the axis (Fig. 3). One of the features of this polyhedron is that any face has two pairs with which it borders two edges. The polyhedron also has a ratio of angles and faces - = − 1. To describe polyhedra with similar characteristics ( = − 1) we use the Euler formula − + = = 2 − 2, where is the Euler characteristic. Since = 3, the equality 3 = 2 holds true.
    [Show full text]
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Representing Graphs by Polygons with Edge Contacts in 3D
    Representing Graphs by Polygons with Side Contacts in 3D∗ Elena Arseneva1, Linda Kleist2, Boris Klemz3, Maarten Löffler4, André Schulz5, Birgit Vogtenhuber6, and Alexander Wolff7 1 Saint Petersburg State University, Russia [email protected] 2 Technische Universität Braunschweig, Germany [email protected] 3 Freie Universität Berlin, Germany [email protected] 4 Utrecht University, the Netherlands [email protected] 5 FernUniversität in Hagen, Germany [email protected] 6 Technische Universität Graz, Austria [email protected] 7 Universität Würzburg, Germany orcid.org/0000-0001-5872-718X Abstract A graph has a side-contact representation with polygons if its vertices can be represented by interior-disjoint polygons such that two polygons share a common side if and only if the cor- responding vertices are adjacent. In this work we study representations in 3D. We show that every graph has a side-contact representation with polygons in 3D, while this is not the case if we additionally require that the polygons are convex: we show that every supergraph of K5 and every nonplanar 3-tree does not admit a representation with convex polygons. On the other hand, K4,4 admits such a representation, and so does every graph obtained from a complete graph by subdividing each edge once. Finally, we construct an unbounded family of graphs with average vertex degree 12 − o(1) that admit side-contact representations with convex polygons in 3D. Hence, such graphs can be considerably denser than planar graphs. 1 Introduction A graph has a contact representation if its vertices can be represented by interior-disjoint geometric objects1 such that two objects touch exactly if the corresponding vertices are adjacent.
    [Show full text]
  • 131 865- EDRS PRICE Technclogy,Liedhanical
    ..DOCUMENT RASH 131 865- JC 760 420 TITLE- Training Program for Teachers of Technical Mathematics in Two-Year Cutricnla. INSTITUTION Queensborough Community Coll., Bayside, N Y. SPONS AGENCY New York State Education Dept., Albany. D v.of Occupational Education Instruction. PUB DATE Jul 76 GRANT VEA-78-2-132 NOTE 180p. EDRS PRICE MP-$0.83 HC-S10.03 Plus Postage. DESCRIPTORS *College Mathematics; Community Colleges; Curriculum Development; Engineering Technology; *Junior Colleges Mathematics Curriculum; *Mathematics Instruction; *Physics Instruction; Practical ,Mathematics Technical Education; *Technical Mathematics Technology ABSTRACT -This handbook 1 is designed'to.aS ist teachers of techhical'mathematics in:developing practically-oriented-curricula -for their students. The upderlying.assumption is that, while technology students are nOt a breed apartr their: needs-and orientation are_to the concrete, rather than the abstract. It describes the:nature, scope,and dontett,of curricula.. in Electrical, TeChnClogy,liedhanical Technology4 Design DraftingTechnology, and: Technical Physics', ..with-particularreterence to:the mathematical skills which are_important for the students,both.incollege.andot -tle job. SaMple mathematical problemsr-derivationSeand.theories tei be stressed it..each of_these.durricula-are presented, as- ate additional materials from the physics an4 mathematics. areas. A frame ok-reference-is.provided through diScussiotS ofthe\careers,for.which-. technology students-are heing- trained'. There.iS alsO &section deioted to
    [Show full text]
  • 900.00 Modelability
    986.310 Strategic Use of Min-max Cosmic System Limits 986.311 The maximum limit set of identical facets into which any system can be divided consists of 120 similar spherical right triangles ACB whose three corners are 60 degrees at A, 90 degrees at C, and 36 degrees at B. Sixty of these right spherical triangles are positive (active), and 60 are negative (passive). (See Sec. 901.) 986.312 These 120 right spherical surface triangles are described by three different central angles of 37.37736814 degrees for arc AB, 31.71747441 degrees for arc BC, and 20.90515745 degrees for arc AC__which three central-angle arcs total exactly 90 degrees. These 120 spherical right triangles are self-patterned into producing 30 identical spherical diamond groups bounded by the same central angles and having corresponding flat-faceted diamond groups consisting of four of the 120 angularly identical (60 positive, 60 negative) triangles. Their three surface corners are 90 degrees at C, 31.71747441 degrees at B, and 58.2825256 degrees at A. (See Fig. 986.502.) 986.313 These diamonds, like all diamonds, are rhombic forms. The 30- symmetrical- diamond system is called the rhombic triacontahedron: its 30 mid- diamond faces (right- angle cross points) are approximately tangent to the unit- vector-radius sphere when the volume of the rhombic triacontahedron is exactly tetravolume-5. (See Fig. 986.314.) 986.314 I therefore asked Robert Grip and Chris Kitrick to prepare a graphic comparison of the various radii and their respective polyhedral profiles of all the symmetric polyhedra of tetravolume 5 (or close to 5) existing within the primitive cosmic hierarchy (Sec.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]
  • Polyhedral Models of the Projective Plane
    Bridges 2018 Conference Proceedings Polyhedral Models of the Projective Plane Paul Gailiunas 25 Hedley Terrace, Gosforth, Newcastle, NE3 1DP, England; [email protected] Abstract The tetrahemihexahedron is the only uniform polyhedron that is topologically equivalent to the projective plane. Many other polyhedra having the same topology can be constructed by relaxing the conditions, for example those with faces that are regular polygons but not transitive on the vertices, those with planar faces that are not regular, those with faces that are congruent but non-planar, and so on. Various techniques for generating physical realisations of such polyhedra are discussed, and several examples of different types described. Artists such as Max Bill have explored non-orientable surfaces, in particular the Möbius strip, and Carlo Séquin has considered what is possible with some models of the projective plane. The models described here extend the range of possibilities. The Tetrahemihexahedron A two-dimensional projective geometry is characterised by the pair of axioms: any two distinct points determine a unique line; any two distinct lines determine a unique point. There are projective geometries with a finite number of points/lines but more usually the projective plane is considered as an ordinary Euclidean plane plus a line “at infinity”. By the second axiom any line intersects the line “at infinity” in a single point, so a model of the projective plane can be constructed by taking a topological disc (it is convenient to think of it as a hemisphere) and identifying opposite points. The first known analytical surface matching this construction was discovered by Jakob Steiner in 1844 when he was in Rome, and it is known as the Steiner Roman surface.
    [Show full text]
  • 41 Three Dimensional Shapes
    41 Three Dimensional Shapes Space figures are the first shapes children perceive in their environment. In elementary school, children learn about the most basic classes of space fig- ures such as prisms, pyramids, cylinders, cones and spheres. This section concerns the definitions of these space figures and their properties. Planes and Lines in Space As a basis for studying space figures, first consider relationships among lines and planes in space. These relationships are helpful in analyzing and defining space figures. Two planes in space are either parallel as in Figure 41.1(a) or intersect as in Figure 41.1(b). Figure 41.1 The angle formed by two intersecting planes is called the dihedral angle. It is measured by measuring an angle whose sides line in the planes and are perpendicular to the line of intersection of the planes as shown in Figure 41.2. Figure 41.2 Some examples of dihedral angles and their measures are shown in Figure 41.3. 1 Figure 41.3 Two nonintersecting lines in space are parallel if they belong to a common plane. Two nonintersecting lines that do not belong to the same plane are called skew lines. If a line does not intersect a plane then it is said to be parallel to the plane. A line is said to be perpendicular to a plane at a point A if every line in the plane through A intersects the line at a right angle. Figures illustrating these terms are shown in Figure 41.4. Figure 41.4 Polyhedra To define a polyhedron, we need the terms ”simple closed surface” and ”polygonal region.” By a simple closed surface we mean any surface with- out holes and that encloses a hollow region-its interior.
    [Show full text]
  • The Fragmentation of Being and the Path Beyond the Void 1555 Copyright 1994 Kent D
    DRAFT Fragment 34 AUTOPOIETIC STRUCTURE In this essay, a hypothetical structure of the autopoietic system will be explored. This structure has been alluded to throughout the foregoing metaphysical development of the importance of the autopoietic concept. But it is good to have a purely structural model to refer to in order to develop the metaphysical concepts at a more concrete level of the general architecture of autopoietic systems. This development will depart from the structure given by Plato, and will attempt to give a model that is clearer and more internally coherent, developed from first principles. This is not to say that all autopoietic systems necessarily have this form, but that it is closer to the archetypal form and more clearly of an axiomatic simplicity and purity. It is posited that autopoietic systems may take an unknown variety of forms, and that we are merely giving one which is closest to the threshold of minimality. Much of the contents of this essay owes its insights to work cited earlier on software development methodologies and software development work process. This concrete discipline lent itself to developing these ideas in The Fragmentation of Being and The Path Beyond The Void 1555 Copyright 1994 Kent D. Palmer. All rights reserved. Not for distribution. AUTOPOIETIC STRUCTURE unexpected ways. Some steps toward the position stated here may be found in my series on Software Engineering Foundations and the article on The Future Of Software Process. In the latter article, I attempted to articulate what an autopoietic software process might look like. In the course of developing those ideas and realizing their connection to the work on software design methods, the following approach to defining the autopoietic system arose.
    [Show full text]
  • &Doliruqld 6Flhqfh &Hqwhu
    &DOLIRUQLD6FLHQFH&HQWHU &$/,)251,$67$7(6&,(1&()$,5 2001 PROJECT SUMMARY Your Name (List all student names if multiple authors.) Science Fair Use Only Eric A. Ford Project Title (Limit: 120 characters. Those beyond 120 will be ignored. See pg. 9) J1111 Fair Dice? Division X Junior (6-8) Senior (9-12) Preferred Category (See page 5 for descriptions.) 11 - Mathematics & Software Abstract (Include Objective, Methods, Results, Conclusion. See samples on page 14.) Use no attachments. Only text inside these boxes will be used for category assignment or given to your judges. My objective was to test my hypothesis that the regular polyhedral dice I was testing (a tetrahedron, an octahedron, a dodecahedron, an icosahedron, and a rhombic triacontahedron) would be fair dice and that a non-isohedral pentahedral solid, which I predicted would be more likely to land on its larger faces more frequently than its smaller ones, would not be fair. I determined if each die were fair by conducting a set number of throws (50 times the number of sides of the die) under the same conditions, which I recorded on separate tally sheets, using different colors for each set of ten times the number of sides of the die. I was then able to determine what values were reached for each increment and enter those data into a spreadsheet that I had set up to calculate the chi-square values. Next, I calculated the confidence percentages and confidence intervals for each set of rolls. I believed that if the chi-square values reached a confidence level of 95% for a given die, it could be considered fair.
    [Show full text]
  • Pentahedral Volume, Chaos, and Quantum Gravity
    Pentahedral volume, chaos, and quantum gravity Hal M. Haggard1 1Centre de Physique Th´eoriquede Luminy, Case 907, F-13288 Marseille, EU∗ We show that chaotic classical dynamics associated to the volume of discrete grains of space leads to quantal spectra that are gapped between zero and nonzero volume. This strengthens the connection between spectral discreteness in the quantum geometry of gravity and tame ultraviolet behavior. We complete a detailed analysis of the geometry of a pentahedron, providing new insights into the volume operator and evidence of classical chaos in the dynamics it generates. These results reveal an unexplored realm of application for chaos in quantum gravity. A remarkable outgrowth of quantum gravity has been The area spectrum has long been known to be gapped. the discovery that convex polyhedra can be endowed with However, in the limit of large area eigenvalues, doubts a dynamical phase space structure [1]. In [2] this struc- have been raised as to whether there is a volume gap [6]. ture was utilized to perform a Bohr-Sommerfeld quanti- The detailed study of pentahedral geometry here pro- zation of the volume of a tetrahedron, yielding a novel vides an explanation for and alternative to these results. route to spatial discreteness and new insights into the We focus on H = V as a tool to gain insight into spectral properties of discrete grains of space. the spectrum of volume eigenvalues. The spatial volume Many approaches to quantum gravity rely on dis- also appears as a term in the Hamiltonian constraint of cretization of space or spacetime. This allows one to general relativity, the multiplier of the cosmological con- control, and limit, the number of degrees of freedom of stant; whether chaotic volume dynamics also plays an the gravitational field being studied [3].
    [Show full text]
  • Star and Convex Regular Polyhedra by Origami. Build Polyhedra by Origami.]
    Star and convex regular polyhedra by Origami. Build polyhedra by Origami.] Marcel Morales Alice Morales 2009 E D I T I O N M ORALES Polyhedron by Origami I) Table of convex regular Polyhedra ................................................................................................. 4 II) Table of star regular Polyhedra (non convex) .............................................................................. 5 III) Some Polyhedra that should be named regular done with equilateral triangles .......................... 6 IV) Some Polyhedra that should be named regular done with rectangle triangles ............................ 7 V) Some geometry of polygons ........................................................................................................ 9 VI) The convex regular polygons ..................................................................................................... 12 VII) The star regular polygons .......................................................................................................... 12 VIII) Regular convex polygons by folding paper ............................................................................. 14 1) The square .......................................................................................................................................... 14 2) The equilateral triangle ....................................................................................................................... 14 3) The regular pentagon .........................................................................................................................
    [Show full text]