The Thirty-Meter-Telescope

Total Page:16

File Type:pdf, Size:1020Kb

The Thirty-Meter-Telescope The Thirty-Meter-Telescope Project Update Science in the 2020s Tucson Feb. 2018 Christophe Dumas TMT International Observatory 1 TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 1 History of project Thirty-Meter-Telescope (TMT) = Merging of 3 earlier concepts. Current cost ~1,500 M$ CELT: California Extremely Large Telescope (30m diameter). Caltech and Univ. California VLOT: Very Large Optical Telescope (20m diameter). Canadian Universities for Research in Astronomy (ACURA) GSMT: (30m diameter). National Optical Astronomical CELT Observatory (NOAO) & Gemini Observatory 2003: Foundation of TMT Observatory Corporation VLOT (Caltech, UC, ACURA) 2008: NAOJ joins 2009: Funding provided by G. & B. Moore Foundation 2014: Chinese & Indian partners officially join GSMT 2016: TMT International Observatory TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 2 History of project (Cont’d) AURA is also an Associate Member of TMT on behalf of the US national community Through a cooperative agreement with the NSF, TMT and a US-SWG are developing a model for potential US national partnership in the TMT Organization of five TMT science forums International Science Development Teams Education & public outreach More info? Talk to Mark Dickinson at NOAO and/or check http://ast.noao.edu/system/us-tmt-liaison TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 3 Thirty Meter Telescope Site Locations Site characteristics MKO ORM (median values, unless stated) (USA) (Spain) Altitude of site (m) 4050 2250 Fraction of yearly usable time (%) 72 72 Seeing at 60m above ground (arcsecond) 0.50 0.55 Isoplanatic angle (arcsecond) 2.55 2.33 Atmospheric coherence time (ms) 7.3 6.0 Precipitable Water Vapor (% of time < 54 20 2mm) Mean nighttime temperature (oC) 2.3 7.6 Extinction (V mag/airmass) 0.111 0.137 Ground dust concentration (µg/m³) Significant funding provided by the Gordon and Betty Moore Foundation0.815 1.006 TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 4 Sites: Decision expected this April MKO: ORM: 2016-2017: 1.5 years long 2017: Hosting Agreement MOU contested case signed between TIO and IAC Sep. 2017: BLNR approves the 2017: Collaboration agreement Construction District Use Permit signed between TIO, IAC, La Palma Today: Stronger and more “open” government & local municipality local support than in 2015 2018: Environmental Impact Still, obstacles lay ahead: Assessment (EIA) submitted to Appeal #1: Feb. 2017: To avoid island authorities (last step before another contested case on the applying for a construction permit) sublease between the UH and Environment is extremely positive TMT towards its support of TMT: “Oral arguments” mid-March ‘18 Project receives support at all Appeal #2: Oct. 2017: Appeal filed administrative and government by opponents about CDUP levels All government offices are No date has been set yet for oral coordinating their actions arguments TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 5 Current timeline April 2018: Tentative date for a site decision by TIO Board Q2-Q4 2018: Realistic expectation to have safe & legal mountain access granted in Hawaii and/or Spain 1st semester 2019: Start of Construction in Hawaii or Spain 2020-2022: Enclosure assembly End 2023: End construction of all summit buildings 2022-2024: Telescope structure integration 2024-2027: AIV, commissioning 2028: “First-light” TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 6 The Thirty-Meter-Telescope and its systems Ritchey-Chrétien optical design M1: 30m hyperboloidal f/1 M2: 3.1m convex hyperboloidal (AM2 studies started) M3: Flat 2.5m x 3.5m f/15 final focal ratio 20 arcmin FoV (2.62m ø) Up to 8 instruments on two Nasmyth platforms AO at first-light (NFIRAOS) TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX LGSF (MCAO, MOAO) 7 TMT systems Ritchey-Chrétien optical design M1: 30m hyperboloidal f/1 M2: 3.1m convex hyperboloidal (active) M3: Flat 2.5m x 3.5m f/15 final focal ratio 20 arcmin FoV (2.62m diameter) Up to 8 instruments on two Nasmyth platforms AO at first-light (NFIRAOS) LGSF (MCAOS, MOAO) TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 8 Project status (systems) All critical systems are in advanced status of design, or have already started construction Common Software: Started construction Enclosure, AO, M1 optics, Telescope structure, summit facilities: All in FD phase Nearly half of all M1 blanks have already been fabricated IRIS (1st light instrument): Also in FD phase TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 9 TMT Enclosure is Completing Final Design phase TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 10 M1 Segment Polishing at IIA The reference sphere vendor has been selected, Callaghan Innovation, New Zealand. The Crest polishing facility near Bengaluru is to be completed in early 2018 to house technology from Coherent. TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 11 OPT: Prototype Segment installed in MSIT SSA fabricated in India by Godrej TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 12 CTR: Observatory Safety System Working towards a unified approach across the observatory for functional safety and access control First promulgation with Structure and Enclosure design teams Met with Fortress twice to discuss trapped key solutions and ability to monitor keys and gates Observatory hazard access control analysis is ongoing Added situational awareness in control room to the scope of the Observatory Safety System preliminary design work. TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 13 Defining Capabilities in the TMT Discovery Space Adaptive Optics required TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 14 TMT (envisioned) instruments suite Feasibility studies for next generation instruments will start next year TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 15 AO system & IRIS in FD phase IRIS PDR -1 & -2 passed successfully in Nov. 2016 and Sep. 2017 FD phase will last for ~ 3years Final design for all components, including software AO system (NFIRAOS): RTC (real-time-controller) FDR passed in Dec. 2017 Upcoming: NFIRAOS FDR: July 2018 Visible cam FDR: Sep. 2018 NFIRAOS IRIS OIWFS IRIS support structure IRIS science cryostat IRIS cable wrap TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 16 WFOS: Fiber vs slicer designs “Slicer-WFOS” “Fiber-WFOS” • Slit-slicer modules at the focal plane • Factor of ~10 gain in multiplex with high-performance VPH gratings • IFU GLAO mode opens new science Down-select planned by end of April 2018 17 Feb 2018: WFOS team presents trade studies Mar 2018: SAC and technical peer-reviews Apr 2018: Down-select committee reaches final consensus/decision. TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 17 TMT Science Forum 2017 White papers on future instruments Goal of November Forum was to prepare teams to respond to Call for White Papers on TMT next generation instruments Call released in Sep. 2017 new instruments and adaptive optics systems, other technical developments Deadline to respond March 21, 2018 SAC to review instrument concepts, define priorities, and make recommendation to TMT Board TMT Board expected to support some feasibility studies TMT first-light currently expected to happen in 2028 Instruments development need > 10 years, hence it is time to start study of instrument concepts for next-generation! TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 18 Acknowledgments The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, and the Department of Science and Technology of India and their supported institutes. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA), the U.S. National Science Foundation and the National Institutes of Natural Sciences of Japan. TMT Proprietary TMT.PMO.PRE.XX.XXX.RELXX 19.
Recommended publications
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • The Thirty-Meter Telescope: Science and Instrumentation for a Next-Generation Observatory
    J. Astrophys. Astr. (2013) 34, 97–120 c Indian Academy of Sciences The Thirty-Meter Telescope: Science and Instrumentation for a Next-Generation Observatory Luc Simard TMT Observatory Corporation, 1111 South Arroyo Parkway, Suite 200, Pasadena, CA 91105, USA. e-mail: [email protected] Received 15 March 2013; accepted 25 June 2013 Abstract. The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the plan- ets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful suite of adaptive optics systems and science instruments. Three science instruments will be available at first light: an optical multi-object spectrometer, a near- infrared multi-slit spectrometer and a diffraction-limited near-infrared imager and integral field spectrometer. In addition to these three instru- ments, a diverse set of new instruments under study will bring additional workhorse capabilities to serve the science interests of a broad user community. The development of TMT instruments represents a large, long-term program that offers a wide range of opportunities to all TMT partners. Key words.Telescopes—instrumentation: spectrographs—instrumentation: photometers. 1. Introduction The Thirty-Meter Telescope (TMT) will be a flagship facility for addressing many compelling areas in astrophysics and delivering currently unforeseen discoveries in astronomy. TMT will lead a new generation of giant optical/infra-red, ground- based telescopes with fully integrated Adaptive Optics (AO). An overview of the TMT Observatory is given in Sanders (2013), and the TMT Adaptive Optics pro- gram is described in Ellerbroek (2013).
    [Show full text]
  • The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview
    The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview Anna M. Moore*a, James E. Larkinb, Shelley A. Wrightc,d, Brian Baumane, Jennifer Dunnf, Brent Ellerbroekg, Andrew C. Phillipsh, Luc Simardi, Ryuji Suzukij, Kai Zhangk, Ted Aliadob, George Brimsb, John Canfieldb, Shaojie Chenc, Richard Dekanya, Alex Delacroixa, Tuan Doc,d, Glen Herriotf, Bungo Ikenouej, Chris Johnsonb, Elliot Meyerc,d, Yoshiyuki Obuchij, John Pazderf, Vladimir Reshetovf, Reed Riddlea, Sakae Saitoj, Roger Smitha, Ji Man Sohnb, Fumihiro Uraguchij, Tomonori Usudaj, Eric Wangb, Lianqi Wangg, Jason Weissj and Robert Woofff aCaltech Optical Observatories,1200 E California Blvd., Pasadena, CA 91125; bDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547; cDunlap Institute for Astronomy & Astrophysics, University of Toronto, ON, Canada, M5S 3H4; dDepartment of Astronomy & Astrophysics, University of Toronto, ON, Canada, M5S 3H4; eLawrence Livermore National Laboratory, 7000 East Ave., M/S L-210, Livermore, CA 94550; fHerzberg Institute of Astrophysics (HIA), National Research Council Canada, 5071 W Saanich Rd, Victoria, V9E 2E7; gThirty Meter Telescope Observatory Corporation, 1111 S. Arroyo Pkwy, #200, Pasadena, CA 91105; hUniversity of California Observatories, CfAO, University of California, 1156 High St., Santa Cruz, CA 95064; iDominion Astrophysical Observatory, National Research Council Canada, W Saanich Rd, Victoria, V9E 2E7; jNational Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 Japan; kNanjing Institute of Astronomical Optics and Technology, Chinese Academy of Sciences, 188 Bancang St, Nanjing, Jiangsu, China 210042. ABSTRACT We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT).
    [Show full text]
  • India's Participation in the Thirty-Meter Telescope Project B
    J. Astrophys. Astr. (2013) 34, 87–95 c Indian Academy of Sciences India’s Participation in the Thirty-Meter Telescope Project B. Eswar Reddy Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India e-mail: [email protected] Received 30 April 2013; accepted 26 June 2013 Abstract. In 2010, the Department of Science and Technology (DST), Govt. of India, approved astronomers’ proposal of India joining the inter- national consortium of the USA, Japan, Canada and China to build and operate the next generation mega ground based optical and infrared tele- scope known as the Thirty-Meter Telescope (TMT) after its aperture size of 30-meter diameter. Since then, India is engaged in many aspects of the TMT project, both at technical and policy levels. In this article, I con- fine to the description of India’s efforts leading up to the decision to join the consortium, and the progress made since then with respect to India’s technical contributions to the project. Key words. Telescope: thirty-meter telescope—India TMT: India TMT Co-ordination Center. 1. Background The quest for understanding fundamental issues such as the possible existence of life beyond the solar system, the so-called dark energy believed to be causing the Uni- verse to accelerate, and many other astrophysical phenomenon such as formation of planetary systems, and formation and evolution of stars and galaxies led astronomers the world over to propose to build the next generation mega ground-based optical and infrared telescopes. Thus formed the three independent international consortia consisting of countries and institutes cutting across the continents: The Giant Magel- lan Telescope (25-m; GMT, site: Las Campanas, Chile), the Thirty-Meter Telescope (30-m; TMT, site: Mauna Kea, Hawaii, USA) and the European-Extremely Large Telescope (39-m; E-ELT, site: Cerro Armazons, Chile).
    [Show full text]
  • A Status Report on the Thirty Meter Telescope Adaptive Optics Program
    J. Astrophys. Astr. (2013) 34, 121–139 c Indian Academy of Sciences A Status Report on the Thirty Meter Telescope Adaptive Optics Program B. L. Ellerbroek TMT Observatory Corporation, 1111 S. Arroyo Pkwy., Ste. 200, Pasadena, CA 91107, USA. e-mail: [email protected] Received 15 March 2013; accepted 24 May 2013 Abstract. We provide an update on the recent development of the adap- tive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 laser guide star (LGS) multi- conjugate AO (MCAO) architecture will provide uniform, diffraction- limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. The NFIRAOS and LGSF subsystems completed successful preliminary and conceptual design reviews, respec- tively, in the latter part of 2011. We also report on progress in AO component prototyping, control algorithm development, and system per- formance analysis, and conclude with an outline of some possible future AO systems for TMT. Key words. Adaptive optics—extremely large telescope. 1. Introduction The first light facility AO system for TMT is the Narrow Field Infra-Red AO Sys- tem (NFIRAOS), which will provide diffraction-limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole. This is accomplished with order 60 × 60 wavefront sensing and cor- rection, two deformable mirrors (DMs) conjugate to ranges of 0 and 11.2 km, six sodium Laser Guide Stars (LGSs) in an asterism with a diameter of 70 arcsec, and three low order (tip/tilt or tip/tilt/focus), infra-red Natural Guide Star (NGS) Wave- Front Sensors (WFSs) deployable within a 2 arcminute diameter patrol field.
    [Show full text]
  • Thirty Meter Telescope Detailed Science Case: 2015
    TMT.PSC.TEC.07.007.REL02 PAGE 1 DETAILEDThirty SCIENCE CASE: Meter 2015 TelescopeApril 29, 2015 Detailed Science Case: 2015 International Science Development Teams & TMT Science Advisory Committee TMT.PSC.TEC.07.007.REL02 PAGE I DETAILED SCIENCE CASE: 2015 April 29, 2015 Front cover: Shown is the Thirty Meter Telescope during nightime operations using the Laser Guide Star Facility (LGSF). The LGSF will create an asterism of stars, each asterism specifically chosen according to the particular adaptive optics system being used and the science program being conducted. TMT.PSC.TEC.07.007.REL02 PAGE II DETAILED SCIENCE CASE: 2015 April 29, 2015 DETAILED SCIENCE CASE: 2015 TMT.PSC.TEC.07.007.REL02 1 DATE: (April 29, 2015) Low resolution version Full resolution version available at: http://www.tmt.org/science-case © Copyright 2015 TMT Observatory Corporation arxiv.org granted perpetual, non-exclusive license to distribute this article 1 Minor revisions made 6/3/2015 to correct spelling, acknowledgements and references TMT.PSC.TEC.07.007.REL02 PAGE III DETAILED SCIENCE CASE: 2015 April 29, 2015 PREFACE For tens of thousands of years humans have looked upward and tried to find meaning in what they see in the sky, trying to understand the context in which they and their world exists. Consequently, astronomy is the oldest of the sciences. Since Aristotle began systematically recording the motions of the planets and formulating the first models of the universe there have been over 2350 years of scientific study of the sky. The earliest scientists explained their observations with the earth-centered universe model and little more than two millennia later we now live in an age where we are beginning to characterize exoplanets and systematically probing the evolution of the universe from its earliest moments to the present day.
    [Show full text]
  • A Native Hawaiian-Led Summary of the Current Impact of Constructing the Thirty Meter Telescope on Maunakea
    A Native Hawaiian-led summary of the current impact of constructing the Thirty Meter Telescope on Maunakea Sara Kahanamoku*, Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720 Rosie ʻAnolani Alegado PhD, Department of Oceanography, University of Hawaiʻi Mānoa, HI 96822 Aurora Kagawa-Viviani, Department of Geography and Environment, University of Hawaiʻi at Mānoa, HI 96822 Katie Leimomi Kamelamela PhD, Akaka Foundation for Tropical Forests, Kamuela, HI 96743 Brittany Kamai PhD, California Institute of Technology, Pasadena, CA 91125 Lucianne M. Walkowicz PhD, Astronomy Department, The Adler Planetarium, Chicago, IL 60605 Chanda Prescod-Weinstein PhD, Department of Physics & Astronomy and Department of Women’s & Gender Studies, University of New Hampshire, Durham, NH 03824 Mithi Alexa de los Reyes, Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 Hilding Neilson PhD, Department of Astronomy & Astrophysics, University of Toronto, Toronto, ON, M5S 3H4 *Corresponding author; [email protected] Disclaimer: Addressing every recommendation in this white paper does not constitute any form of consent from Native Hawaiians for TMT or for a Maunakea lease permit. Our recommendations are minimum first steps that can be undertaken to begin a process of building an iterative and equitable relationship with Native Hawaiians. 1 Executive summary Maunakea, the proposed site of the Thirty Meter Telescope (TMT), is a lightning-rod topic for Native Hawaiians,
    [Show full text]
  • Building the Gateway to the Universe 3
    B UILDING THE GATEWAY TO T HE UN IVERSE T HIRTY M ETER TEL ESCOPE 42581_Book.indd 2 10/12/10 11:11 AM CONTENTS 02 The Story of TMT is the History of the Universe 04 Breakthroughs and Discoveries in Astronomy 08 Grand Challenges of Astronomy 12 A Brief History of Astronomy and Telescopes 14 The Best Window on the Universe 16 The Science and Technology of TMT 26 Technology, Innovation, and Science 28 Turning Starlight into Insight On the cover Artist’s concept of the Thirty Meter Telescope. The unique dome design optimizes TMT’s view while minimizing its size. The louvered openings surrounding the dome enable the observatory to balance the air temperature inside the dome with that of the surrounding atmosphere, ensuring the best possible image with the telescope. Photo-illustration: Skyworks Digital 42581_Book.indd 3 10/12/10 11:11 AM B UILDING THE GATEWAY TO T HE UN IVERSE 42581_Book.indd 1 10/12/10 11:11 AM THE STORY OF TMT IS THE HISTORY OF THE U N IVERSE The Thirty Meter Telescope (TMT) will take us on an exciting journey of dis- covery. The TMT will explore the origin of galaxies, reveal the birth and death of stars, probe the turbulent regions surrounding supermassive black holes, and uncover previously hidden details about planets orbiting distant stars, including the possibility of life on these alien worlds. 2 T HIRTY METERT ELESCO PE 42581_Book.indd 2 10/12/10 11:11 AM Photo-illustration: Dana Berry MAUNA KEA HAWAII SELECTED AS PREFERRED SITE FULLY INTEGRATED LASER GUIDE STAR ADAPTIVE OPTICS INTERNATIONAL SCIENCE PARTNERSHIP BUILDING THE GATEWAY TO THE UNIVERSE 3 42581_Book.indd 3 10/12/10 11:11 AM B REAKTHROUG HS A ND DISCOV ERI ES I N ASTRONOMY Research in astronomy has revealed exciting details about our place in the cosmos.
    [Show full text]
  • Adaptive Optics for the Thirty Meter Telescope
    Adaptive Optics for the Thirty Meter Telescope Brent Ellerbroek Thirty Meter Telescope Observatory Corporation Presentation to NAOC Beijing, June 23, 2011 TMT.AOS.PRE.11.085.REL01 1 Presentation Outline TMT adaptive optics (AO) requirements The first light TMT AO system design – Narrow Field Infra-Red AO System (NFIRAOS) – Laser Guide Star Facility (LGSF) AO component development Summary TMT.AOS.PRE.11.085.REL01 2 The Thirty Meter Telescope (TMT) Project Intends to build a Thirty Meter Telescope for ground based, visible and near infra-red astronomy Is a collaboration of: – The Association of Canadian Universities for Research in Astronomy (ACURA) – The University of California – The California Institute of Technology Construction scheduled to – NAOJ (participant), NAOC begin in 2012-13 (participant), and India (observer) First light to follow after a 7- Is now concluding a Design and year construction schedule Development Phase (DDP) to – Establish the system design – Determine the cost and schedule – Select a site (Mauna Kea 13N) 3 TMT.AOS.PRE.11.085.REL01 The TMT Design Ritchey-Chretien optical design form D = 30 m, f/1 primary 492 1.42m segments 3.05 m convex secondary f/15 output focal ratio 15 arc min unvignetted FOV Articulated tertiary Nasmyth-mounted instrumentation TMT.AOS.PRE.11.085.REL01 4 Many TMT Observations Require High Angular Resolution Studying the spatial structure and star formation regions of distant galaxies Precision astrometry and photometry of crowded star fields – Has been used to determine star orbital dynamics and “weigh” the black hole at the center of our galaxy Direct detection and characterization of extra-solar planets – Expected star-to-planet contrast ratios from 106 to 109 Real-time atmospheric turbulence compensation via adaptive optics (AO) enables high resolution observations such as these from the ground 5 TMT.AOS.PRE.11.085.REL01 Sample AO Results on Large Telescopes Galactic Center Astrometry (Keck LGS AO) Multi-Conjugate AO on a 2’ FoV (VLT) Classical AO MCAO LGS AO Science Papers vs.
    [Show full text]
  • AN OVERVIEW of the ACTIVE OPTICS CONTROL STRATEGY for the THIRTY METER TELESCOPE Mark J
    Proceedings of ICALEPCS2011, Grenoble, France MOPKS023 AN OVERVIEW OF THE ACTIVE OPTICS CONTROL STRATEGY FOR THE THIRTY METER TELESCOPE Mark J. Sirota, George Z. Angeli, Douglas G. MacMynowski, TMT Observatory Corporation, Pasadena, CA. 91105, U.S.A. Terry Mast, Jerry Nelson, University of California, Santa Cruz, CA. 95064, U.S.A. Gary Chanan, University of California, Irvine, 92697, U.S.A. M. Mark Colavita, Christian Lindensmith, Chris Shelton, Mitchell Troy, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. 01109, U.S.A. Peter M. Thompson, Systems Technology, Inc., Hawthorne, CA. 90250, U.S.A. Abstract TMT will be sited at Mauna Kea, Hawaii. The primary (M1), secondary (M2) and tertiary (M3) Construction of the telescope is scheduled to begin in mirrors of the Thirty Meter Telescope (TMT), taken 2014 with first light with all 492 segments in 2021. together, have over 10,000 degrees of freedom. The vast majority of these are associated with the 492 individual primary mirror segments. The individual segments are converted into the equivalent of a monolithic thirty meter primary mirror via the Alignment and Phasing System (APS) and the Primary Mirror Control System (M1CS). In this paper we first provide an introduction to the TMT. We then describe the overall optical alignment and control strategy for the TMT and follow up with additional descriptions of the M1CS and the APS. We conclude with a short description of the TMT error budget process and provide an example of error allocation and predicted performance for wind induced segment jitter. INTRODUCTION The Thirty Meter Telescope (TMT) is a collaborative Figure 1: The Thirty Meter Telescope.
    [Show full text]
  • India TMT Digest
    THIRTY METER TELESCOPE A New Window to the Universe W India TMT Digest ITCC India TMT Coordination Center (ITCC) Indian Institute of Astrophysics II Block, Koramangala, Bangalore – 560034 India TMT Project Web Pages Main Site http://tmt.org/ TMT India http://tmt.iiap.res.in/ TMT Canada http://lot.astro.utoronto.ca/ TMT China http://tmt.bao.ac.cn/ TMT Japan http://tmt.mtk.nao.ac.jp/ Version III: November 2014 Credits: Smitha Subramanian, Ravinder Banyal, Eswar Reddy, Annapurni Subramaniam, G.C.Anupama, Gordon Squires, Juan C. Vargas, Tim Pyle, P.K. Mahesh, Padmakar Parihar Prasanna Deshmukh & Rosy Deblin 2 M The Background Prior to Galileo Galilei, our view of the universe was largely constrained to the unaided vision of the eyes. A mere 3-inch telescope used by him in 1608 brought a revolution in astronomy. This simple but novel instrument revealed the vastness and grandeur of the night sky which hitherto was unknown to humanity. Large telescopes (up to 10 m diameter) built in the last 20 years have led to many fascinating and intriguing discoveries in astronomy. With the advancement in technology, a tremendous progress has been made in understanding several aspects of the observable Universe. Some of the notable findings in the last few decades include the discovery of planets around other stars, irrefutable evidence for accelerating universe, indirect clues of supermassive black holes in the center of many galaxies, powerful gamma ray bursts originating from the distant corners of the Universe, existence of dark matter and dark energy, detailed identification and monitoring of asteroids and comets that could pose a serious threat to the inhabitants of the Earth and many more.
    [Show full text]
  • Astro2020 Science White Paper Detecting Earth-Like Biosignatures on Rocky Exoplanets Around Nearby Stars with Ground-Based Extremely Large Telescopes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Astro2020 Science White Paper Detecting Earth-like Biosignatures on Rocky Exoplanets around Nearby Stars with Ground-based Extremely Large Telescopes Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Mercedes López-Morales Institution: Center for Astrophysics | Harvard & Smithsonian Email: [email protected] Phone: +1.617.496.7818 Co-authors: Thayne Currie (NASA-Ames/Subaru Telescope), Johanna Teske (Carnegie Observatories), Eric Gaidos (U. of Hawaii), Eliza Kempton (U. of Maryland), Jared Males (U. of Arizona), Nikole Lewis (Cornell University), Benjamin V. Rackham (U. of Arizona), Sagi Ben-Ami (CfA), Jayne Birkby (U. of Amsterdam, Netherlands), David Charbonneau (CfA), Laird Close (U. of Arizona), Jeff Crane (Carnegie Observatories), Courtney Dressing (U. of California Berkeley), Cynthia Froning (U. of Texas at Austin),Yasuhiro Hasegawa (NASA-JPL/Caltech), Quinn Konopacky (U. of California San Diego), Ravi K. Kopparapu (NASA-GSFC), Dimitri Mawet (California Institute of Technology), Bertrand Mennesson (Caltech/NASA-JPL), Ramses Ramirez (ELSI/Tokyo Institute of Technology), Deno Stelter (U. of California Santa Cruz), Andrew Szentgyorgyi (CfA), Ji Wang (Ohio State University) Co-signers: Munazza Alam (CfA), Karen Collins (CfA), Andrea Dupree (CfA), Julien Girard (STScI), Raphaëlle Haywood (CfA), Margarita Karovska (CfA), James Kirk (CfA), Amit Levi (CfA), Christian Marois (NRC-Herzberg), Chima McGruder (CfA), Chris Packman (U. of Texas San Antonio), Paul Rimmer (U.
    [Show full text]