Natural Antimicrobials in Pregnancy

Total Page:16

File Type:pdf, Size:1020Kb

Natural Antimicrobials in Pregnancy Natural Antimicrobials in Pregnancy Sarah JE Stock BSc (Hons) MBChB Jennifer Brown Research Fellow Edinburgh University Department of Obstetrics and Gynaecology Centre for Reproductive Biology Queen’s Medical Research Institute 47 Little France Crescent Edinburgh EH16 4TJ Thesis submitted to the University of Edinburgh for the Degree of Doctor of Philosophy March 2008 i Abstract Natural antimicrobials are peptides that are essential components of the innate immune system, providing broad-spectrum protection against bacteria, yeasts and some viruses. In addition to their innate immune activity, they exhibit properties suggesting they interact with the adaptive immune system. These functions imply they may be of particular importance in pregnancy. Intrauterine infection is responsible for approximately one third of cases of preterm labour, and normal labour is considered an inflammatory process, associated with leukocyte invasion of the uterine tissues and increased cytokine production. Little is known, however, about natural antimicrobial expression in pregnant reproductive tract. The aim of this thesis was thus to characterize natural antimicrobial production in pregnancy. The study focused on two main areas – the lower genital tract, comprised of the vagina and cervix; and the innermost fetal membrane, the amnion. In the lower genital tract, levels of natural antimicrobials were determined in samples of cervicovaginal secretions collected from pregnant women, using enzyme linked immunosorbance assay (ELISA). In addition Taqman quantitative PCR and ELISAs were used to investigate natural antimicrobial production by cell lines derived from endocervical, ectocervical and vaginal epithelium. It was found that elafin and secretory leucocyte protease inhibitor (SLPI) were found at high concentrations in cervicovaginal secretions, but levels were diminished in women with the common vaginal infection bacterial vaginosis (p<0.05). Cells derived from the vaginal epithelium expressed greater amounts of elafin than cervically derived cells. However, elafin and SLPI production could be stimulated in endocervical cells by the bacterial product lipopolysaccharide, a response that was not seen in the vaginal cell line. Natural antimicrobial production in the amnion was examined in tissue explants and primary cultured amnion cells, using a combination of Taqman PCR and ELISAs. In addition, cDNA microarray was carried out to investigate factors controlling amniotic antimicrobial production, and the involvement of signalling pathways was ii studied using specific pathway inhibitors. It was shown that the amnion expressed five antimicrobials: human beta defensins (HBD) 1, 2 and 3, SLPI and elafin. Expression of HBD2 was significantly upregulated following normal labour (p<0.05), with production in primary amnion epithelial cells dramatically increased by IL-1ß. The pattern of HBD2 expression in response to IL-1ß was biphasic, which suggested involvement of a secondary gene product. Several putative influential factors were identified by cDNA micorarray, including the NF-kappaB cofactor NF- kappaBinhibitorζ. Its relationship to HBD2 was explored. The involvement of both NF-kappaB and mitogen activated protein (MAP) kinase p38 signalling appeared crucial in the response. This work has shown that natural antimicrobials are expressed by both the lower genital tract, where infections that are associated with preterm labour originate, and in the amnion, which is the fetus’ last line of defence to infection. They may have an important role in the prevention of infection associated preterm labour. Further characterization of these responses may increase understanding of the physiology, and pathophysiology of labour, and lead to strategies for the prevention of premature delivery. iii Declaration Except where due acknowledgment is made by reference the studies undertaken in this thesis were the unaided work of the author. The work described in this thesis has not been previously accepted for, or is currently being submitted in candidature for another degree. Chapter 2 I acknowledge the assistance of Dr Elena Facenda who designed the majority of the primer/probe sets for Taqman quantitative PCR. I acknowledge the assistance of Professor Hilary Critchley, who provided the three endometrial RNA samples for use as positive controls. Chapter 3 I acknowledge the assistance of Rosie Branford, a medical student, who helped perform initial feasibility trials for the collection of cervicovaginal secretions. I also acknowledge the assistance of Leanne Duthie, another medical student, who collected most of the cervicovaginal secretion samples, helped with sample processing and performed some of the total protein, HBD2 and SLPI assays. Chapter 5 I acknowledge the assistance of the staff at the Scottish Centre for Genomics Technology and Informatics, particularly Marie Craigon, Thorsten Foster and Professor Peter Ghazal, who performed the cDNA microarray and helped with data analysis. My gratitude is extended to each of them. Sarah Stock March 2008 iv Acknowledgements I am indebted to Professor Rodney Kelly and Dr Simon Riley for their supervision of this project. I must also extend thanks to Professors Andrew Calder and Hilary Critchley for their guidance over the past three years. I would not have been able to perform any of the experiments described without help and instruction from the staff in the Queen’s Medical Research Institute. I am grateful to have had the opportunity to work in such a stimulating, productive and supportive environment. I am especially grateful to Dr Elena Facenda, Vivien Grant, Dr Phil Driver and Dr Nicole Kane (the “RWK Lab Group” as was) for their knowledge and patience. Nicole, in particular, was a brilliant lab partner, who was greatly missed when she left. Rose Leask not only provided a sympathetic ear when things didn’t go according to plan, but invariably came up with some practical tips to solve the problem. Dr Adam Pawson’s help was invaluable and he provided new approaches to seemingly unanswerable questions. Many thanks also to the staff at Genomics, Technology and Informatics, and Mick Rae, Anne King and Mike Miller, for their frequent advice. This project was generously supported by the Jennifer Brown Research Fund. It has been a privilege to have been involved in this new iniative, and to work with Anne Armstrong, Cath Dhaliwal and Hannah Shore – the other members of the Jennifer Brown Group. Amy Robb and Scott Fegan have also been fantastic office companions. I could not have asked for better colleagues or better friends, and I am sure they will remain as such throughout my career. I would like to say a big thankyou to my parents for their encouragement, and in particular to my mum for her diligent proof-reading of this manuscript. Finally, thankyou to Jim, for his unfaltering support, which I could not have done without. v Publications, Presentations and Posters Relating to this Thesis PUBLICATIONS Stock, S., Kelly, R.W., Riley, S.C., Calder, A.A. (2007) “Natural Antimicrobial Production by the Amnion”Am J Obst Gynecol 196 (3): 255e1-6 (Appendix 5) ORAL PRESENTATIONS Microarray analysis of the effects of interleukin-1 beta on the amnion. British Maternal and Fetal Medicine Society Annual Conference: Belfast April 2007 Elafin is Produced by Cells Derived from the Vagina and Cervix, and Levels are Diminished in Bacterial Vaginosis. Society of Gynaecological Investigation (SGI) Annual Conference: Reno March 2007 • SGI President’s Presenter Awards for Abstract Natural antimicrobials and bacterial vaginosis in pregnancy. Blair Bell Research Society Meeting: Leicester November 2006 • Best Oral Presentation Natural antimicrobials produced by the amnion: a possible role in defence against ascending infection. British Maternal and Fetal Medicine Society Annual Conference: Cardiff April 2006 • Best Oral Presentation (Labour and Delivery) Natural antimicrobials in the amnion. Blair Bell Research Competition: Royal College of Obstetricians and Gynaecologists, London November 2005 • Highly Commended vi POSTERS Natural Antimicrobials in the Amnion. Biochemical Society Meeting: “Antimicrobial peptides: mediators of innate immunity in the development of anti-infective, therapeutic and vaccination strategies”, Edinburgh, November 2005 (Abstract in Biochemical Society Transactions Vol 34 Part) MANUSCRIPTS IN PREPARATION Levels of Elafin are Diminished in Cervicovaginal Secretions in Association with Bacterial Vaginosis The effect of IL-1β on the amniotic epithelium vii Contents Abstract ii Declaration iv Acknowledgments v Publications, presentations and prizes relating to this thesis vi Contents viii List of figures xv Abbreviations xviii Chapter 1: LITERATURE REVIEW 1.1. Introduction 2 1.2. The Reproductive Tract in Pregnancy 3 1.2.1. The Uterus 3 1.2.2. The Cervix 4 1.2.3. The Fetal Membranes 5 1.2.3.1. Structure of the Fetal Membranes 5 1.2.3.2. Functions of the Fetal Membranes 6 1.2.4. The Vagina 8 1.3. The Innate Immune Response and Inflammation 9 1.3.1. Mediators of Inflammation 11 1.3.1.1. Cytokines 11 1.3.1.2. Chemokines 17 1.3.1.3. Prostaglandins 18 1.3.1.4. Matrix metalloproteinases 19 1.3.1.5. Toll-like receptors 20 1.3.2. Inflammatory Signalling 21 1.3.2.1. Receptor activation and adaptor recruitment 24 1.3.2.2. Activation of protein kinase cascades 24 1.3.2.3. Transcription factors 26 1.3.2.4. mRNA stabilization and post-transcriptional modifications 28 viii 1.4. Inflammation, Infection and Preterm Labour 28 1.4.1.Labour as an inflammatory process 28 1.4.2.The onset of normal labour 29 1.4.3.The onset of preterm labour 30 1.4.4.Infection as a cause of preterm labour 31 1.4.5.Bacterial Vaginosis and preterm labour 36 1.4.6.Clinical aspects of preterm labour and infection 39 1.4.6.1. Outcomes 39 1.4.6.2. Antibiotics for the prevention of preterm labour 40 1.4.6.3. Antibiotics for the treatment of preterm labour 41 1.5. Natural Antimicrobials 42 1.5.1.Human beta-defensins (HBDs) 43 1.5.2.The antileukoproteinases- SLPI and elafin 46 1.5.2.1. Structure and distribution 46 1.5.2.2. Antiprotease activity 47 1.5.2.3.
Recommended publications
  • Elafin Antibody / PI3 (R32376)
    Elafin Antibody / PI3 (R32376) Catalog No. Formulation Size R32376 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide UniProt P19957 Localization Cytoplasmic Applications Western blot : 0.1-0.5ug/ml IHC (FFPE) : 0.5-1ug/ml ELISA : 0.1-0.5ug/ml (human protein tested); request BSA-free format for coating Limitations This Elafin antibody is available for research use only. Western blot testing of human placenta lysate with Elafin antibody. Predicted molecular weight ~12 kDa (pre-form), observed here at ~25 kDa. IHC testing of FFPE human tonsil with Elafin antibody. HIER: Boil the paraffin sections in pH 6, 10mM citrate buffer for 20 minutes and allow to cool prior to testing. Description Elafin, also known as peptidase inhibitor 3 or skin-derived antileukoprotease (SKALP), is a protein that in humans is encoded by the PI3 gene. This gene encodes an elastase-specific inhibitor that functions as an antimicrobial peptide against Gram-positive and Gram-negative bacteria, and fungal pathogens. The protein contains a WAP-type four-disulfide core (WFDC) domain, and is thus a member of the WFDC domain family. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. And this gene belongs to the centromeric cluster. Expression of this gene is upgulated by bacterial lipopolysaccharides and cytokines.
    [Show full text]
  • Anti-Elafin Antibody [C7] (ARG59025)
    Product datasheet [email protected] ARG59025 Package: 50 μg anti-Elafin antibody [C7] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [C7] recognizes Elafin Tested Reactivity Hu Tested Application IHC-P Host Mouse Clonality Monoclonal Clone C7 Isotype IgG1 Target Name Elafin Antigen Species Human Immunogen Recombinant protein corresponding to A61-Q117 of Human Elafin. Conjugation Un-conjugated Alternate Names Protease inhibitor WAP3; cementoin; WFDC14; Skin-derived antileukoproteinase; WAP four-disulfide core domain protein 14; SKALP; Elafin; Elastase-specific inhibitor; WAP3; Peptidase inhibitor 3; ESI; PI-3 Application Instructions Application table Application Dilution IHC-P 0.5 - 1 µg/ml Application Note IHC-P: Antigen Retrieval: Heat mediated was performed in Citrate buffer (pH 6.0) for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 12 kDa Properties Form Liquid Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 - 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol PI3 Gene Full Name peptidase inhibitor 3, skin-derived Background This gene encodes an elastase-specific inhibitor that functions as an antimicrobial peptide against Gram- positive and Gram-negative bacteria, and fungal pathogens.
    [Show full text]
  • Predictions of Novel Schistosoma Mansoni
    www.nature.com/scientificreports OPEN Predictions of novel Schistosoma mansoni - human protein interactions consistent with Received: 20 April 2018 Accepted: 14 August 2018 experimental data Published: xx xx xxxx J. White Bear1,2,6, Thavy Long3,4,5, Danielle Skinner4 & James H. McKerrow3,4 Infection by the human blood fuke, Schistosoma mansoni involves a variety of cross-species protein- protein interactions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin evasion of the immune system, and digestion of human plasma proteins including albumin and hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specifc interactions between S. mansoni and human proteins have been identifed. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions. In this study, we have preliminary predictions of novel interactions between schistosome and human proteins relevant to infection and the ability of the parasite to evade the immune system. We applied a computational whole-genome comparative approach to predict potential S. mansoni-human protein interactions based on similarity to known protein complexes. We frst predict S. mansoni -human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual flters, including the use of annotation automatically derived from literature using a simple natural language processing methodology. Next, in vitro experiments were carried out between schistosome and host proteins to validate several prospective predictions. Our method predicted 7 out of the 10 previously known cross-species interactions involved in pathogenesis between S.
    [Show full text]
  • A Locus on Human Chromosome 20 Contains Several Genes Expressing Protease Inhibitor Domains with Homology to Whey Acidic Protein
    A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Clauss, Adam; Lilja, Hans; Lundwall, Åke Published in: Biochemical Journal DOI: 10.1042/BJ20020869 2002 Link to publication Citation for published version (APA): Clauss, A., Lilja, H., & Lundwall, Å. (2002). A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochemical Journal, 368(Pt 1), 233-242. https://doi.org/10.1042/BJ20020869 Total number of authors: 3 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Biochem. J. (2002) 368, 233–242 (Printed in Great Britain) 233 A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein Adam CLAUSS, Hans LILJA and AH ke LUNDWALL1 Wallenberg Laboratory, Department of Laboratory Medicine, University Hospital MAS, Lund University, S-205 02 Malmo$ , Sweden A locus containing 14 genes, encoding protein domains that have nucleotides.
    [Show full text]
  • Human Antimicrobial Peptides and Proteins
    Pharmaceuticals 2014, 7, 545-594; doi:10.3390/ph7050545 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Human Antimicrobial Peptides and Proteins Guangshun Wang Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA; E-Mail: [email protected]; Tel.: +402-559-4176; Fax: +402-559-4077. Received: 17 January 2014; in revised form: 15 April 2014 / Accepted: 29 April 2014 / Published: 13 May 2014 Abstract: As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism.
    [Show full text]
  • The Role of Secretory Leukocyte Proteinase Inhibitor and Elafin
    http://respiratory-research.com/content/1/2/087 Review The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease commentary Jean-Michel Sallenave Edinburgh Medical School, Edinburgh, Scotland, UK Received: 18 July 2000 Respir Res 2000, 1:87–92 Revisions requested: 3 August 2000 The electronic version of this article can be found online at Revisions received: 7 August 2000 http://respiratory-research.com/content/1/2/087 Accepted: 7 August 2000 Published: 23 August 2000 © Current Science Ltd (Print ISSN 1465-9921; Online ISSN 1465-993X) Abstract review Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by ‘alarm signals’ such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial ‘defensin-like’ peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental.
    [Show full text]
  • Staphylococcus Aureus Secretes a Unique Class of Neutrophil Serine Protease Inhibitors
    Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors Daphne A. C. Stapelsa, Kasra X. Ramyarb, Markus Bischoffc, Maren von Köckritz-Blickweded, Fin J. Mildera, Maartje Ruykena, Janina Eisenbeisc, William J. McWhortere, Mathias Herrmannc, Kok P. M. van Kessela, Brian V. Geisbrechtb,1, and Suzan H. M. Rooijakkersa,1,2 aMedical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands; bDepartment of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; cInstitute of Medical Microbiology and Hygiene, Saarland University Faculty of Medicine and Medical Center, D-66421 Homburg/Saar, Germany; dDepartment of Physiological Chemistry, University of Veterinary Medicine, D-30559 Hannover, Germany; and eSchool of Biological Sciences, University of Missouri–Kansas City, Kansas City, MO 64110 Edited by Richard P. Novick, New York University School of Medicine, New York, NY, and approved July 31, 2014 (received for review April 28, 2014) Neutrophils are indispensable for clearing infections with the Results prominent human pathogen Staphylococcus aureus. Here, we re- Extracellular Adherence Proteins of S. aureus Inhibit NE. To in- port that S. aureus secretes a family of proteins that potently vestigate whether S. aureus secretes inhibitors of NSPs, we in- inhibits the activity of neutrophil serine proteases (NSPs): neutro- cubated NE with concentrated culture supernatants of different phil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not S. aureus strains and quantified residual NE activity toward a related serine proteases, are specifically blocked by the extracel- fluorescent peptide substrate. Indeed, we found that NE was lular adherence protein (Eap) and the functionally orphan Eap inhibited by supernatants of all tested S.
    [Show full text]
  • Elafin Antibody [Clone C7] (RQ4509)
    Elafin Antibody [clone C7] (RQ4509) Catalog No. Formulation Size RQ4509 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Purified Clonality Monoclonal (mouse origin) Isotype Mouse IgG1 Clone Name C7 Purity Protein G affinity Buffer Lyophilized from 1X PBS with 2% Trehalose and 0.025% sodium azide UniProt P19957 Localization Secreted Applications Immunohistochemistry (FFPE) : 1-2ug/ml Capture ELISA : 1-5ug/ml (human recombinant protein) Limitations This Elafin antibody is available for research use only. IHC testing of FFPE human tonsil tissue with Elafin antibody at 2ug/ml. HIER: boil tissue sections in pH6, 10mM citrate buffer, for 10-20 min followed by cooling at RT for 20 min. Description Elafin, also known as peptidase inhibitor 3 or skin-derived antileukoprotease (SKALP), is a protein that in humans is encoded by the PI3 gene. This gene encodes an elastase-specific inhibitor that functions as an antimicrobial peptide against Gram-positive and Gram-negative bacteria, and fungal pathogens. The protein contains a WAP-type four-disulfide core (WFDC) domain, and is thus a member of the WFDC domain family. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. And this gene belongs to the centromeric cluster. Expression of this gene is upgulated by bacterial lipopolysaccharides and cytokines. Application Notes Optimal dilution of the Elafin antibody should be determined by the researcher. Immunogen Human Elafin/Skalp recombinant protein (amino acids A61-Q117) was used as the immunogen for the Elafin antibody.
    [Show full text]
  • Predictions of Protein-Protein Interactions in Schistosoma Mansoni Javona White Bear,1,2∗ James H
    bioRxiv preprint doi: https://doi.org/10.1101/233072; this version posted December 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Predictions of Protein-Protein Interactions in Schistosoma Mansoni Javona White Bear,1;2∗ James H. McKerrow3 1 Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158 2 Graduate Group in Bioinformatics, University of California, San Francisco, CA 94158, USA 3 Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California at San Francisco, San Francisco, California 94158, USA ∗*To whom correspondence should be addressed. Email: [email protected] Abstract Background Schistosoma mansoni invasion of the human host involves a variety of cross-species protein-protein inter- actions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin, evasion of the immune system, and digestion of human hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specific interac- tions between S. mansoni and human proteins have been identified. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions. Methods In this study, we first predict S. mansoni -human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual filters, including the use of annotation automatically derived from literature using a simple natural language processing methodology.
    [Show full text]
  • Human PI3 / Elafin / WFDC14 Protein (His Tag)
    Human PI3 / Elafin / WFDC14 Protein (His Tag) Catalog Number: 12187-H08H General Information SDS-PAGE: Gene Name Synonym: cementoin; ESI; MGC13613; SKALP; WAP3; WFDC14 Protein Construction: A DNA sequence encoding the human PI3 (NP_002629.1) (Met 1-Gln 117) was fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 92 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Elafin, also known as Elastase-specific inhibitor, Peptidase inhibitor 3, Stability: Protease inhibitor WAP3, Skin-derived antileukoproteinase, WAP four- disulfide core domain protein 14, PI3, WAP3 and WFDC14, is a secreted Samples are stable for up to twelve months from date of receipt at -70 ℃ protein which contains oneWAP domain. Elafin / PI3 consists of two domains: the transglutaminase substrate domain (cementoin moiety) and Predicted N terminal: Ala 23 the elastase inhibitor domain. The transglutaminase substrate domain at Molecular Mass: the N-terminus serves as an anchor to localize elafin covalently to specific sites on extracellular matrix proteins. The serine anti-protease Elafin / PI3 The recombinant human PI3 consists of 106 amino acids and has a is expressed by monocytes, alveolar macrophages, neutrophils, and at predicted molecular mass of 11.3 kDa. In SDS-PAGE under reducing mucosal surfaces and possesses antimicrobial activity. It is also known to conditions, the apparent molecular mass of rh PI3 is approximately 13-16 reduce lipopolysaccharide-induced neutrophil influx into murine alveoli as kDa. well as to abrogate lipopolysaccharide-induced production of matrix metalloprotease 9, macrophage inhibitory protein 2, and tumor necrosis Formulation: factor-alpha by as-yet unidentified mechanisms.
    [Show full text]
  • Overexpression of Elafin in Ovarian Carcinoma Is Driven by Genomic
    Volume 12 Number 2 February 2010 pp. 161–172 161 www.neoplasia.com Overexpression of Elafin in Adam Clauss*,†,3, Vivian Ng*,3, Joyce Liu*,†, Huiying Piao*, Moises Russo*,†, Natalie Vena‡, Ovarian Carcinoma Is Driven by Qing Sheng†,§, Michelle S. Hirsch†,¶, Tomas Bonome#, Ursula Matulonis*,†, Genomic Gains and Activation of Azra H. Ligon†,‡,¶, Michael J. Birrer†,** the Nuclear Factor κB Pathway and Ronny Drapkin*,†,‡,¶ and Is Associated with Poor *Dana-Farber Cancer Institute, Department of Medical 1,2 Oncology, Boston, MA, USA; †Harvard Medical School, Overall Survival ‡ Boston, MA, USA; Dana-Farber Cancer Institute, Center for Molecular Oncologic Pathology, Boston, MA, USA; §Dana-Farber Cancer Institute, Department of Cancer Biology, Boston, MA, USA; ¶Brigham and Women’s Hospital, Department of Pathology, Boston, MA, USA; #National Institutes of Health, Molecular Mechanisms Section, Bethesda, MD, USA; **Massachusetts General Hospital, Department of Medicine, Boston, MA, USA Abstract Ovarian cancer is a leading cause of cancer mortality in women. The aim of this study was to elucidate whether whey acidic protein (WAP) genes on chromosome 20q13.12, a region frequently amplified in this cancer, are expressed in serous carcinoma, the most common form of the disease. Herein, we report that a trio of WAP genes (HE4, SLPI, and Elafin) is overexpressed and secreted by serous ovarian carcinomas. To our knowledge, this is the first report linking Elafin to ovarian cancer. Fluorescence in situ hybridization analysis of primary tumors demonstrates genomic gains of the Elafin locus in a majority of cases. In addition, a combination of peptidomimetics, RNA interference, and chromatin immunoprecipitation experiments shows that Elafin expression can be transcriptionally upregulated by inflammatory cytokines through activation of the nuclear factor κB pathway.
    [Show full text]
  • Kallikrein-Related Peptidases in Human Epidermis -Studies on Activity, Regulation, and Function
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No 1174 ISSN 0346-6612 ISBN 978-91-7264-555-4 Department of Public Health and Clinical Medicine, Dermatology and Venereology, Umeå University, Umeå, Sweden Kallikrein-related Peptidases in Human Epidermis -Studies on Activity, Regulation, and Function Kristina Stefansson Umeå 2008 Copyright © Kristina Stefansson New Series No 1174 ISSN 0346-6612 ISBN 978-91-7264-555-4 Printed by Print & Media, Umeå University, 2008:2004585 To Mikael and Edwin TABLE OF CONTENTS ABSTRACT 3 ORIGINAL ARTICLES 5 ABBREVIATIONS 6 POPULÄRVETENSKAPLIG SAMMANFATTNING 7 INTRODUCTION 9 The Skin 9 Evolutionary Aspects of the Skin 9 Basal Structure of the Skin 9 Epidermal Turnover and Desquamation 12 The Corneodesmosome 13 The Stratum Corneum pH Gradient 13 Skin Immunology and Inflammation 14 Cathelicidin 14 Interleukin -1 15 Kallikrein-related Peptidases (KLKs) 15 Nomenclature 15 Genomic Organization 16 Protein Structure 17 Substrate Specificity 17 KLK Function in Various Organs 18 Kallikrein-related Peptidases in Skin Physiology 20 KLKs in Desquamation 20 KLKs in Skin Immunology and Inflammation 21 Inhibitors of Kallikrein-related Peptidase Activity 22 Alpha-1 Antitrypsin 23 Skin-derived Antileukoproteinase (SKALP) 23 Secretory Leukocyte Protease Inhibitor (SLPI) 24 Lympho-epithelial Kazal-type Inhibitor (LEKTI) 24 Proteinase-activated Receptors (PARs) 26 PAR-2 Function in Various Organs 27 PAR-2 in Skin 27 Skin Diseases 29 Atopic Dermatitis 29 Psoriasis 30 Rosacea 31 1 Ichthyosis 32 Netherton Syndrome 33 Short Summary
    [Show full text]