The Putative Ovarian Tumour Marker Gene HE4 (WFDC2), Is Expressed in Normal Tissues and Undergoes Complex Alternative Splicing to Yield Multiple Protein Isoforms

Total Page:16

File Type:pdf, Size:1020Kb

The Putative Ovarian Tumour Marker Gene HE4 (WFDC2), Is Expressed in Normal Tissues and Undergoes Complex Alternative Splicing to Yield Multiple Protein Isoforms Oncogene (2002) 21, 2768 ± 2773 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms Lynne Bingle1, Vanessa Singleton1 and Colin D Bingle*,1 1Respiratory Medicine Unit, Division of Genomic Medicine, University of Sheeld Medical School, Sheeld S10 2RX, UK The whey acidic protein (WAP) domain is a conserved 50 amino acids and includes eight cysteines in a motif, containing eight cysteines found in a characteristic conserved arrangement, hence the term 4-DSC (Ran- 4-disulphide core arrangement, that is present in a ganathan et al., 1999). The WAP domain is not number of otherwise unrelated proteins. WAP motifs however exclusive to WAP proteins but is found in are present in SLPI and ela®n, two antiproteinases numerous other proteins, where it may be present as located on chromosome 20q12-13, in a locus rich in multiple domains. WAP domain proteins are typically poorly characterized WAP domain proteins. One of small secretory proteins, which exhibit a variety of these proteins, which contains two WAP domains, is functions including those which eect growth and HE4 (also known as WFDC2), originally described as an dierentiation (Ranganathan et al., 1999; Schalkwijk et epididymis speci®c protein but more recently suggested al., 1999). From a genomic point of view, multiple to be a putative serum tumour marker for ovarian studies have shown that WAP domains are encoded on cancer. We have shown that HE4 is expressed in a single exons and it has been suggested that the modular number of normal human tissues outside of the male nature of such WAP containing proteins may have reproductive system, including regions of the respiratory arisen by exon shuing (Schalkwijk et al., 1999). A tract and nasopharynx, as well as in a subset of lung number of the well characterized members of the WAP tumour cell lines. Comparison of multiple HE4 cDNAs domain containing family have been shown to exhibit and RT ± PCR products with genomic sequence allowed antiproteinase function. Two such WAP proteins, the elucidation of the genomic organization. These ela®n and SLPI are of major importance in the defence studies revealed that HE4 can undergo a complex series of the lung and skin against release of unregulated of alternative splicing events that can potentially yield proteolytic enzymes by in¯ammatory cells in disease ®ve distinct WAP domain containing protein isoforms. (Schalkwijk et al., 1999). Ela®n contains a single WAP These results cast doubt on the potential role of HE4 as domain whereas SLPI contains two. The genes for a serum tumour marker speci®c for ovarian cancer and ela®n and SLPI are co-localized on chromosome 20 open the door to understanding the function of multiple and share a degree of co-regulation in as much as their WAP domain containing protein isoforms arising from a cellular expression pattern overlaps and they are both single gene. induced by many pro-in¯ammatory stimuli (Bingle et Oncogene (2002) 21, 2768 ± 2773. DOI: 10.1038/sj/ al., 2001; Sallenave et al., 1994). Analysis of the region onc/1205363 of chromosome 20 surrounding the ela®n and SLPI genes has shown that further WAP domain proteins Keywords: WAP domain; 4-disulphide core; gene are located within close proximity to these genes. A expression; alternative splicing; chromosome 20; ela®n recently identi®ed gene, Eppin, that appears to be expressed exclusively within the male reproductive tract, has been shown to contain both a WAP domain and a Kunitz-type domain (Richardson et al., 2001). The four disulphide core (4-DSC), containing Whey On the basis of this structure, it has been proposed that Acidic Proteins (WAP) are the major whey proteins in Eppin, which was also shown to undergo alternative the milk of many mammals and are considered to be splicing, will function as a protease inhibitor (Richard- the prototypic members of this family (Ranganathan et son et al., 2001). A number of other novel WAP and al., 1999). The WAP domain comprises approximately Kunitz-domain containing proteins are also predicted to be present in this region of Chromosome 20 (Perry et al., 1999; Trexler et al., 2001), suggesting that this *Correspondence: CD Bingle, Respiratory Cell and Molecular locus may be a `hot spot' for antiproteinase genes. Biology Laboratory, Respiratory Medicine Unit, Division of Close to the Eppin gene is HE4 (also known as Genomic Medicine, University of Sheeld Medical School, M128, WFDC2), a 2 WAP domain containing protein, Royal Hallamshire Hospital, Glossop Road, Sheeld S10 2RX, UK; initially identi®ed as a transcript exclusively expressed E-mail: [email protected] Received 31 October 2001; revised 29 January 2002; accepted 29 in the epididymis and suggested to be a marker for this January 2002 tissue (Kirchho et al., 1991, 1998). On the basis of its Alternative splicing of the human HE4 gene L Bingle et al 2769 similarity to ela®n and SLPI it has been suggested a that HE4 functions as an anti-proteinase within the male reproductive tract and is important in the process of sperm maturation (Kirchho, 1998). No studies have been performed on the HE4 protein to con®rm these functions. More recently, however, a number of independent studies have reported that HE4 is over expressed in ovarian tumours (Wang et al., 1999; Schummer et al., 1999; Hough et al., 2000). These observations have led to the proposal that, due to its small size and secreted nature, HE4 may serve as a potential serum marker for these types of cancers (Schummer et al., 1999). Analysis of data deposited on the Stanford Genomics Breast Cancer b Consortium Portal (http://genome.www.stanford.edu/ breast_cancer/) also reveals that HE4 expression is increased in some breast tumours (Perou et al., 2000). Additionally analysis of the data set generated by Ross et al. (2000) has shown that HE4 is highly expressed in a number of tumour cell lines, including Ovcar-3 and Ovcar-4 (ovarian), HT-29, HCT-116 and COL0205 (colon), MALME-3M (melanoma), MCF-7 (breast) and A498 and 786-0 (renal) found in the NCI 60 panel. These results further suggest that HE4 may have some utility as a cancer marker. The mechanism underlying this disregulated expression is unresolved. Previous studies have shown that expression of both ela®n and c SLPI is altered in a number of cancers (Robinson et al., 1996; Zhang et al., 1995; Yamamoto et al., 1997). In the case of ela®n expression in breast cancers, it has been shown that abnormal expression is the result of a transcriptional event (Zhang et al., 1997). Multiple cytogenetic studies have shown that the q12-q13.1 region of chromosome 20, in which all of these WAP domain containing genes are located, is abnormal in a number of tumours. For example, ampli®cation of this Figure 1 Constitutive expression of the human HE4 gene is region has been reported in both ovarian and breast limited to a subset of pulmonary epithelial derived tumour cell cancer (Larramendy et al., 2000; Tanner et al., 2000). lines and is found in multiple tissues outside of the male Deletions of this region have also been reported in oral reproductive tract. (a) A549 and BEAS-2B cells were obtained squamous cell carcinoma (Imai et al., 2001). These from American Tissue Culture Collection. NCI-H226, NCI-H358, NCI-H322 and NCI-H647 cells were a gift of Professor J studies suggest that gene present within this region of Carmichael, University of Nottingham. Total RNA were resolved chromosome 20 may play unde®ned roles in carcinogen- on denaturing agarose gels, Northern blotted and hybridized with esis and or tumour progression. random primed cDNA probes as previously described (Bingle and In view of the fact that both ela®n and SLPI are Bingle, 2000). The cell lines used are: A549 (lane 1), NCI-H647 expressed in multiple epithelium including that in the (lane 2), NCI-H226 (lane 3), NCI-H358 (lane 4), BEAS-2B (lane 5) and NCI-H322 (lane 6). Replicate blots were hybridized with reproductive tract and airways, we hypothesized that 32P labeled cDNA probes corresponding to HE4, ela®n and SLPI HE4 may also be expressed in cells of the pulmonary (Bingle et al., 2001). (b) A commercial multiple tissue poly(A)+ system where it may contribute to the host defence dot blot containing samples from 50 dierent human tissues, was function of the lung. Blast searches of the public EST hybridized with a random primed full length HE4 cDNA probe. Positive signals clearly above background are indicated by the databases with the published full length HE4 sequence grey arrows. (c) A Northern blot containing total RNA from (X63187) identi®ed multiple clones several of which normal peripheral lung and nasal septal epithelium, was were derived from lung tumour libraries. These clones hybridized with a random primed full length HE4 cDNA probe were obtained from the MRC HGMP, Cambridge, UK (http://www.hgmp.mrc.ac.uk/) and sequenced for ver- i®cation. We used one of these fully sequenced ESTs experiments HE4 expression was also found in (accession number BE674284), as a probe on Northern CORL23 cells but not in CORL279 or NCI-H841 blots of total RNA isolated from a variety of lung cells (results not shown). No consistent pattern of derived cell lines. Expression of HE4 was found in expression in certain tumour types was noted. To look NCI-H226, NCI-H358 and BEAS-2B cells (Figure 1a, at the overlap of expression with ela®n and SLPI, lanes 3 ± 5) but not in A549, NCI-H447 and NCI-H322 replicate blots were also probed with these two cells (Figure 1a, lanes 1, 2 and 6).
Recommended publications
  • Combined Human Epididymis 4 and Carbohydrate Antigen 125 Serum Protein Levels Diagnostic Value in Ovarian Cancer
    ISSN: 2640-5180 Madridge Journal of Cancer Study & Research Research Article Open Access Combined Human Epididymis 4 and Carbohydrate Antigen 125 Serum Protein Levels Diagnostic value in Ovarian Cancer Salwa Hassan Teama1*, Reham El Shimy2 and Hebatallah Gamal3 1Department of Molecular Biology, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt 2Department of Clinical and Chemical Pathology, National Cancer Institute, Faculty of Medicine, Cairo University, Cairo, Egypt 3Departement of Surgical Oncology, National Cancer Institute, Faculty of Medicine, Cairo University, Cairo, Egypt Article Info Abstract *Corresponding author: Objective: Human Epididymis 4 (HE-4) protein, a new candidate for ovarian cancer Salwa Hassan Teama detection shows promising diagnostic value for ovarian cancer diagnosis, this study aimed Department of Molecular Biology Medical Ain Shams Research Institute to assess the diagnostic significance of combined Human Epididymis 4 and Carbohydrate (MASRI) Antigen 125 (CA-125) serum protein levels in ovarian cancer detection. Faculty of Medicine Ain Shams University Subjects and Methods: A clinical case control study include; forty nine subjects; patients Abbasia, Cairo with ovarian cancer (n=33), non-cancer control group (n=16). Serum protein levels of Egypt HE-4 were measured using an enzyme linked immune sorbent assay (ELISA). All data were Tel: 0020-1005293116 E-mail: [email protected] analyzed by SPSS software (version 21.0.0; IPM SPSS, Chicago, IL, USA). Results: The results showed that increased serum protein concentration of HE-4 (pMol/L) and Received: July 25, 2018 CA-125 (U/ml) in the ovarian cancer group mean (SD)/median (range) 329.61±336.55/199 Accepted: August 13, 2018 Published: August 17, 2018 (28.72-1064) and 521.36±572.60/287 (10.50-2377), than non-cancer control group 64.80±38.51/54.53 (21 -160) and 28.35±10.80/28 (10-50) respectively (p<0.05).
    [Show full text]
  • WFDC2 Control Peptide
    AP10066CP-N OriGene Technologies Inc. OriGene EU Acris Antibodies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] WFDC2 control peptide Alternate names: ESPE4, Epidydimal Secretory Protein E4, HE4, Major Epididymis-Specific protein E4, WAP four-disulfide core domain protein 2, WAP5, WFDC2 Catalog No.: AP10066CP-N Quantity: 0.25 mg Concentration: 2.5 mg/ml Background: The whey acidic protein (WAP) domain is a conserved motif, containing eight cysteines found in a characteristic 4-disulphide core arrangement, that is present in a number of otherwise unrelated proteins. One of these proteins, which contains two WAP domains, is HE4 (also known as WFDC2), originally described as an epididymis specific protein but more recently suggested to be a putative serum tumour marker for ovarian cancer and a presumptive role in natural immunity. The HE4 protein expression is not only confined to epidydimis but is expressed in a number of normal human tissues out side the reproductive system, including regions of the respiratory tract and nasopharynx and in a subset of lung tumor cell lines. HE4 gene expression was highest in normal human trachea and salivary gland, and to a lesser extent, lung, prostate, pituitary gland, thyroid, and kidney. Highest level of expression of ESPE4 was observed in adenocarcinomas of the lung, and occasional breast, transitional cell and pancreatic carcinomas (1). The WFDC2 gene under goes extensive splicing in malignant tissues that give rise to five WAP domain containing iso forms (2).
    [Show full text]
  • Human Epididymis Protein 4 (HE4)
    Human Epididymis Protein 4 (HE4) Monitoring Patients With Epithelial Ovarian Carcinoma Introduction cancer patients.5 This group found that measurement Human epididymis protein 4 (HE4), or WAP four- of HE4 showed sensitivity and specificity comparable disulphide core domain protein 2 (WFDC2), was first to that of CA125 for differentiating postmenopausal identified in the epithelium of the distal epididymis women with ovarian cancer from normal controls.5 They and was originally predicted to be a protease inhibitor suggested that the HE4 assay may have an advantage involved in sperm maturation.1,2 HE4 is the gene over CA125 in that it is less frequently positive in product of the WFDC2 gene that is located on patients with nonmalignant disease.5 chromosome 20q12-13.1.3 The WFDC2 gene is one of 14 homologous genes on this chromosome that encode Expression of HE4 in EOC proteins with WAP-type four-disulphide core (WFDC2) Drapkin and colleagues used immunohistochemical domains.3 techniques to show that cortical inclusion cysts (CIC) lined by metaplastic Mullerian epithelium abundantly HE4 belongs to the family of whey acidic four-disulfide expresses HE4 relative to normal surface epithelium.3 core (WFDC2) proteins with suspected trypsin inhibitor Using tissue microarrays, they showed that HE4 properties3,4; however, no biological function has so far expression was restricted to certain histologic subtypes been identified for HE4.5,6 The HE4 gene codes for a of epithelial ovarian carcinomas (EOC).3 13-kD protein, although in its mature glycosylated
    [Show full text]
  • Identification of Ovarian Cancer Gene Expression Patterns Associated
    ORIG I NAL AR TI CLE JOURNALSECTION IdentifiCATION OF Ovarian Cancer Gene Expression PATTERNS Associated WITH Disease Progression AND Mortality Md. Ali Hossain1,2 | Sheikh Muhammad Saiful Islam3 | Julian Quinn4 | Fazlul Huq5 | Mohammad Ali Moni4,5 1Dept OF CSE, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh Ovarian CANCER (OC) IS A COMMON CAUSE OF DEATH FROM can- 2Dept OF CSE, Jahangirnagar UnivERSITY, CER AMONG WOMEN worldwide, SO THERE IS A PRESSING NEED SaVAR, Dhaka, Bangladesh TO IDENTIFY FACTORS INflUENCING MORTALITY. Much OC PATIENT 3Dept. OF Pharmacy, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh CLINICAL DATA IS NOW PUBLICALLY ACCESSIBLE (including PATIENT 4Bone BIOLOGY divisions, Garvan Institute OF age, CANCER SITE STAGE AND SUBTYPE), AS ARE LARGE DATASETS OF Medical Research, SyDNEY, NSW 2010, OC GENE TRANSCRIPTION PROfiles. These HAVE ENABLED STUDIES AustrALIA CORRELATING OC PATIENT SURVIVAL WITH CLINICAL VARIABLES AND 5The UnivERSITY OF SyDNEY, SyDNEY Medical School, School OF Medical Science, WITH GENE EXPRESSION BUT IT IS NOT WELL UNDERSTOOD HOW THESE Discipline OF Biomedical Sciences, NSW TWO ASPECTS INTERACT TO INflUENCE MORTALITY. TO STUDY THIS 1825, AustrALIA WE INTEGRATED CLINICAL AND TISSUE TRANSCRIPTOME DATA FROM Correspondence THE SAME PATIENTS AVAILABLE FROM THE Broad Institute Cancer Dept OF CSE, Jahangirnagar UnivERSITY, Dhaka, Bangladesh Genome Atlas (TCGA) portal. WE INVESTIGATED OC mRNA The UnivERSITY OF SyDNEY, SyDNEY Medical EXPRESSION LEVELS (relativE TO NORMAL PATIENT TISSUE) OF 26 School, School OF Medical Science, Discipline OF Biomedical Sciences, NSW GENES ALREADY STRONGLY IMPLICATED IN OC, ASSESSED HOW THEIR 1825, AustrALIA EXPRESSION IN OC TISSUE PREDICTS PATIENT SURVIVAL THEN em- Email: al i :hossai n@manarat :ac:bd , mohammad :moni @sydney :eduau PLOYED CoX Proportional Hazard REGRESSION MODELS TO anal- YSE BOTH CLINICAL FACTORS AND TRANSCRIPTOMIC INFORMATION TO FUNDING INFORMATION DETERMINE RELATIVE RISK OF DEATH ASSOCIATED WITH EACH FACTOR.
    [Show full text]
  • Elafin Antibody / PI3 (R32376)
    Elafin Antibody / PI3 (R32376) Catalog No. Formulation Size R32376 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide UniProt P19957 Localization Cytoplasmic Applications Western blot : 0.1-0.5ug/ml IHC (FFPE) : 0.5-1ug/ml ELISA : 0.1-0.5ug/ml (human protein tested); request BSA-free format for coating Limitations This Elafin antibody is available for research use only. Western blot testing of human placenta lysate with Elafin antibody. Predicted molecular weight ~12 kDa (pre-form), observed here at ~25 kDa. IHC testing of FFPE human tonsil with Elafin antibody. HIER: Boil the paraffin sections in pH 6, 10mM citrate buffer for 20 minutes and allow to cool prior to testing. Description Elafin, also known as peptidase inhibitor 3 or skin-derived antileukoprotease (SKALP), is a protein that in humans is encoded by the PI3 gene. This gene encodes an elastase-specific inhibitor that functions as an antimicrobial peptide against Gram-positive and Gram-negative bacteria, and fungal pathogens. The protein contains a WAP-type four-disulfide core (WFDC) domain, and is thus a member of the WFDC domain family. Most WFDC gene members are localized to chromosome 20q12-q13 in two clusters: centromeric and telomeric. And this gene belongs to the centromeric cluster. Expression of this gene is upgulated by bacterial lipopolysaccharides and cytokines.
    [Show full text]
  • Anti-Elafin Antibody [C7] (ARG59025)
    Product datasheet [email protected] ARG59025 Package: 50 μg anti-Elafin antibody [C7] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [C7] recognizes Elafin Tested Reactivity Hu Tested Application IHC-P Host Mouse Clonality Monoclonal Clone C7 Isotype IgG1 Target Name Elafin Antigen Species Human Immunogen Recombinant protein corresponding to A61-Q117 of Human Elafin. Conjugation Un-conjugated Alternate Names Protease inhibitor WAP3; cementoin; WFDC14; Skin-derived antileukoproteinase; WAP four-disulfide core domain protein 14; SKALP; Elafin; Elastase-specific inhibitor; WAP3; Peptidase inhibitor 3; ESI; PI-3 Application Instructions Application table Application Dilution IHC-P 0.5 - 1 µg/ml Application Note IHC-P: Antigen Retrieval: Heat mediated was performed in Citrate buffer (pH 6.0) for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 12 kDa Properties Form Liquid Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 - 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol PI3 Gene Full Name peptidase inhibitor 3, skin-derived Background This gene encodes an elastase-specific inhibitor that functions as an antimicrobial peptide against Gram- positive and Gram-negative bacteria, and fungal pathogens.
    [Show full text]
  • Predictions of Novel Schistosoma Mansoni
    www.nature.com/scientificreports OPEN Predictions of novel Schistosoma mansoni - human protein interactions consistent with Received: 20 April 2018 Accepted: 14 August 2018 experimental data Published: xx xx xxxx J. White Bear1,2,6, Thavy Long3,4,5, Danielle Skinner4 & James H. McKerrow3,4 Infection by the human blood fuke, Schistosoma mansoni involves a variety of cross-species protein- protein interactions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin evasion of the immune system, and digestion of human plasma proteins including albumin and hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specifc interactions between S. mansoni and human proteins have been identifed. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions. In this study, we have preliminary predictions of novel interactions between schistosome and human proteins relevant to infection and the ability of the parasite to evade the immune system. We applied a computational whole-genome comparative approach to predict potential S. mansoni-human protein interactions based on similarity to known protein complexes. We frst predict S. mansoni -human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual flters, including the use of annotation automatically derived from literature using a simple natural language processing methodology. Next, in vitro experiments were carried out between schistosome and host proteins to validate several prospective predictions. Our method predicted 7 out of the 10 previously known cross-species interactions involved in pathogenesis between S.
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]
  • Comprehensive Analysis of HE4 Expression in Normal and Malignant Human Tissues
    Modern Pathology (2006) 19, 847–853 & 2006 USCAP, Inc All rights reserved 0893-3952/06 $30.00 www.modernpathology.org Comprehensive analysis of HE4 expression in normal and malignant human tissues Mary T Galgano1, Garret M Hampton2 and Henry F Frierson Jr1 1Department of Pathology, Robert E. Fechner Laboratory of Surgical Pathology, University of Virginia Medical Center, Charlottesville, VA, USA and 2Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA The HE4 (WFDC2) gene encodes a WAP-type four disulphide core domain-containing protein with a presumptive role in natural immunity. Multiple studies have consistently identified upregulation of HE4 gene expression in carcinomas of the ovary; however, the expression in normal and malignant adult tissues has not been examined in detail. Here, we examined the expression of the HE4 gene and protein in a large series of normal and malignant adult tissues by oligonucleotide microarray and tissue microarray, respectively. HE4 gene expression was highest in normal human trachea and salivary gland, and to a lesser extent, lung, prostate, pituitary gland, thyroid, and kidney. In a series of 175 human adult tumors, gene expression was highest in ovarian serous carcinomas. However, adenocarcinomas of the lung, and occasional breast, transitional cell and pancreatic carcinomas had moderate or high levels of HE4 expression. Using tissue microarrays and full tissue sections of normal and 448 neoplastic tissues, HE4 immunoreactivity was found in normal glandular epithelium of the female genital tract and breast, the epididymis and vas deferens, respiratory epithelium, distal renal tubules, colonic mucosa, and salivary glands, consistent with HE4 gene expression.
    [Show full text]
  • An Investigation Into the Function of WFDC2
    An investigation into the function of WFDC2 Hannah Armes A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Clinical Dentistry The University of Sheffield January 2019 (This page is left blank intentionally) i Acknowledgments First and foremost, I would like to thank my supervisor Dr Lynne Bingle for her endless advice, encouragement and kind words. I have learnt so much from her extensive knowledge and experience. Under Lynne’s supervision I have become a confident and independent researcher and for that I cannot thank her enough. I would also like to thank Professor Colin Bingle for his support throughout both my PhD and my undergraduate degree. His guidance and encouragement made me realise that a career in science was something achievable for me. I would like to give a huge thank you to the technical staff who helped me to make so much progress in my three years at the School of Clinical Dentistry: the wonderful Brenka McCabe and Jason Heath for teaching me molecular biology and microbiology techniques and to Hayley Stanhope for teaching me histological techniques and processing my tissue samples. I would also like to thank Jessica-Leigh Tallis for being an excellent SURE scheme student and for generating some brilliant immunohistochemistry analysis. Thank you to the Bingle group for their support and kind words over the years (Apoorva, Priyanka, Renata, Debora, Chloe, Zulaiha and Esra). A huge thank you to my friends in the 3rd floor PGR office for making me laugh constantly for 3 years, even when faced with lab work disappointments: Amy Harding, Sven Niklander, Marianne Satur and Alex Bolger.
    [Show full text]
  • Expression and Function of Murine WFDC2 in the Respiratory Tract
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.079293; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Bingle et al. Expression and function of murine WFDC2 in the respiratory tract. May 2020 Expression and function of murine WFDC2 in the respiratory tract. L Bingle1*, H Armes1, DJ Williams2, O Gianfrancesco2, Md M K Chowdhury2, R Drapkin3 , C D Bingle2*. 1 Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, South Yorkshire, United Kingdom 2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom. 3 Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA * Joint corresponding authors E-mail: [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.079293; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Bingle et al. Expression and function of murine WFDC2 in the respiratory tract. May 2020 Abstract. WFDC2/HE4 encodes a poorly characterised secretory protein that shares structural similarity with multifunctional host defence proteins through possession of two conserved Whey Acidic Protein/four disulphide-core (WFDC) domains.
    [Show full text]