Yaw Dynamics of Horizontal Axis Wind Turbines: First Annual Report." Solar Energy Research Institute, SERI Technical Report, STR-217-3309

Total Page:16

File Type:pdf, Size:1020Kb

Yaw Dynamics of Horizontal Axis Wind Turbines: First Annual Report. May 1992 NREL/TP-442:-4822 iamics orizontal A.xis rrbines port A.C. Hansen University of Cia a Salt Lake City, Utah "'?tional Renewable Energy Laboratory bivision of Midwest Research Institute NREL/TP-442-4822 c.2 erated for the U.S. Department of Energy der Contract No. DE-AC02-83CH10093 INREL/TP-442-4822 UC Category: 261 DE92001245 Horizontal Axis A.C. Hansen University of Utuh Salt Lake City, Utah NREL Technical Monitor: Alan Wright National Renewable Energy Laboratory (formerly the Solar Energy Research Institute) 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under subcontract no: XL-6-05078-2 May 1992 , i iI h On September 16,1991, the Solar Energy Research Institute was designated a national laboratory, and its name was changed Renewable I- r to the National Energy Laboratory. t i NOTICE ! This repon was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any , agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, corn- i pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily can- stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors , expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. i Printed in the United States of America Available from: National Technical Information Service USDepartment of Commerce 5285 Potl Royal Road Springfield, VA 224 61 Price: Microfiche A01 Printed Copy A09 Codes are used for pricing ail publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern- ! ment RepoffsAnnouncements and Index (GRA and I);Scientific and TechnicalAbstract Reports (SPAR); and publication NTIS-PR-360 available from NTlS at the above address. Notice This report was prepared as an account of work sponsored by the Solar Energy Research Institute, a Division of Midwest Research Institute, in support of its Contract No. DE-AC02-83-CH10093 with the United States Department of Energy. Neither the Solar Energy Research Institute, the United States Government, nor the United States ! Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or !', usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. t Preface This Final Report is a summary of work that has been performed at the University of Utah over the past five years. Several graduate students contributed to the research: Xudong Cui, Noman Siedschlag, Robert Schmepp, and Todd Boadus each assisted in the analysis, programming, validating and debugging, Without their help this work would not have ken possible. Papers, reports and theses which resulted from their efforts we listed at the end of the list of references, Work of this type cannot be completed without the efforts and cosperadsn of many individuals. The SERI technical monitor, contract officials, test personnel and management have all approached this task with the goal of getting ajob done in the most straigh$orward, cost-effective and reasonable manner. And many individuals at . the University of Utah have shared that approach and attitude. That spirit is gratefully and wdyacknowledged. Much of the material of Section 2.0 was originally commissioned by the Wind Turbine Company, Inc, Their permission to include this materid in this report is gratefully acknowledged. Table of Con tents Notice. .............................................................................................. ii... Fkface .......... :................................................................................... III ..................................................................................... List of Figures v ..a List of Tables ...................................................................................... wu List of Symbols.................................................................................... ix 1.0 Introduction ................................................................................. 1 2.0 General Introduction to Yaw Loads ...................................................... 5 2.1 Introduction ........................................................................ 5 2.2 Hub forces and moments of a single blade ..................................... 5 2.3 Hub forces and moments from multiple blades ................................ 7 2.4 Stall hysteresis and dynamic stall ................................................ 9 2.5 Wind disturbances which cause yaw loads ..................................... 9 2.6 Other czdses of yaw loads. ....................................................... 15 2.7 Yaw dynamics of the teetering rotor ............................................. 16 3.0 Theoretical Foundation ..................................................................... 17 3.1 Prediction of Yaw Dynamics ..................................................... 17 3.2 Relation between yaw and flap moments for a rigid rotor ...................-22 3.3 Equations of motion of the teetering rotor ...................................... 24 3.4 Subsystem details,,., .............................................................. 26 4.0 Numerical Solution ......................................................................... 32 4.1 Numerical integration. ............................................................. 32 4. 2 Initial conditions and trim solution .............................................. 32 4.3 Program structure and flow chart ................................................. 33 4.4 Computer requirements ........................................................... 33 5.0 ValidationStudies .......................................................................... 35 5.1 Introduction ........................................................................ 35 5.2 Md-2 Wind Tunnel Test Comparisons ........................................ 35 5.3 SEN Combined Experiment and FLAP Prediction Comparisons ........... 38 5.4 Free-yaw predictions and measurements from the Combined Experiment rotor ................................................................................. 48 5.5 Teeter Predictions by YawDyn and STRAP.................................... 49 6.0 Sensitivity Studies .......................................................................... 52 6.1 Introduction ........................................................................ 52 6.2 Rigid-hub configuration .......................................................... 52 6.3 Teetering rotor configuration ..................................................... 61 6.4 A Comparison of the Free-Yaw Behavior of Rigid and Teetering Rotors . 64 7.0 Conclusions and Recommendations ...................................................... 67 7.1 The YawDyn Model ............................................................... 67 7.2 Yaw Loads on a Rigid Rotor ..................................................... 68 7.3 Yaw Loads on a Teetering Rotor ................................................ 68 7.4 Yaw Motions of Rigid and Teetering Rotors ................................... 69 7.5 Recommendations for Additional Research .................................... 69 References. ......................................................................................... 71 Appendix A Derivations of the Equations of Motion ........................................ A1 Appendix B Characteristics of the Wind Turbines ........................................... B1 Appendix C User's Guide to the YawDyn program ......................................... C1 iv I List of Figures Figure 2.1 Schematic view of the wind turbine showing the forces exerted by ome blade upon the hub....................................................... 7 Figure 2.2 Stdl hysteresis for the SEW Combined Experiment calculated by YawDyn, Wind speed 30 fds, yaw angle 30°, no whd shear or tower shadow. .................................................................... 11 Figure 2.3 Angle of attack of blades at two azimuth positions when the rotor operates with a yaw enor.. ...................................................... 12 Figure 2.4 Effect of vertical wind component on the angles of attack.. ................. 13 Figure 2.5 Effect of horizontd wind shear on the angles of attack, ..................... 14 Figure 3.1 Schematic of the rotor showing the primary blade variables. The view on the right is looking into the wind. .................................... 18 Figure 3.2 Hinged blade with torsional spring.. ........................................... 19 Figure 3.3 Comparison of the measured yaw
Recommended publications
  • Yet Another Web Server
    Yaws - Yet Another Web Server Claes Wikstrom [email protected] September 9, 2018 Contents 1 Introduction 4 1.1 Prerequisites . 5 1.2 A tiny example . 5 2 Compile, Install, Config and Run 7 2.0.1 Compile and Install . 7 2.0.2 Configure . 8 3 Static content 11 4 Dynamic content 12 4.1 Introduction . 12 4.2 EHTML . 12 4.3 POSTs . 17 4.3.1 Queries . 17 4.3.2 Forms . 17 4.4 POSTing files . 18 5 Mode of operation 22 5.1 On-the-fly compilation . 22 5.2 Evaluating the Yaws Code . 23 6 SSL 24 6.1 Server Name Indication . 25 7 Applications 26 7.1 Login scenarios . 26 7.1.1 The session server . 26 1 CONTENTS 2 7.1.2 Arg rewrite . 28 7.1.3 Authenticating . 29 7.1.4 Database driven applications . 31 7.2 Appmods . 31 7.3 The opaque data . 32 7.4 Customizations . 32 7.4.1 404 File not found . 33 7.4.2 Crash messages . 33 7.5 Stream content . 34 7.6 All out/1 Return Values . 35 8 Debugging and Development 39 8.1 Logs . 39 9 External scripts via CGI 40 10 FastCGI 41 10.1 The FastCGI Responder Role . 41 10.2 The FastCGI Authorizer Role . 42 10.3 The FastCGI Filter Role . 42 10.4 FastCGI Configuration . 42 11 Security 43 11.1 WWW-Authenticate . 43 12 Embedded mode 45 12.1 Creating Global and Server Configurations . 45 12.2 Starting Yaws in Embedded Mode . 46 13 The config file - yaws.conf 47 13.1 Global Part .
    [Show full text]
  • SDK De AWS Para Ruby Developer Guide
    SDK de AWS para Ruby Developer Guide SDK de AWS para Ruby: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. SDK de AWS para Ruby Developer Guide Las marcas comerciales y la imagen comercial de Amazon no se pueden utilizar en relación con ningún producto o servicio que no sea de Amazon de ninguna manera que pueda causar confusión entre los clientes y que menosprecie o desacredite a Amazon. Todas las demás marcas comerciales que no son propiedad de Amazon son propiedad de sus respectivos propietarios, que pueden o no estar afiliados, conectados o patrocinados por Amazon. SDK de AWS para Ruby Developer Guide Table of Contents AWSGuía para desarrolladores de SDK for Ruby ................................................................................... 1 Mediante laAWSSDK for Ruby conAWS Cloud9 .............................................................................. 1 Acerca de esta guía ................................................................................................................... 1 Documentación y recursos adicionales .......................................................................................... 2 Implementación enAWSCloud ............................................................................................... 2 Mantenimiento y soporte para las versiones principales del SDK ........................................................ 2 Introducción ......................................................................................................................................
    [Show full text]
  • Goldwind Brochure-1.5-Web.Indd
    www.goldwindamerica.com E-mail: [email protected] Goldwind USA, Inc. 200 West Madison Street Suite 2800 Chicago, Illinois, USA Tel: +1 312-948-8050 Fax: +1 312-948-8051 PC: 60601 Xinjiang Goldwind Science & Technology Co., Ltd 107 Shanghai Road, Economic & Technological Development Zone, Urumqi, Xinjiang Tel: +86-(0)991-3767999 PMDD WIND TURBINE Fax: +86-(0)991-3762039 PC: 830026 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. No. 19 Kangding Road, Economic & Technological 1.5MW Development Zone, Beijing (I) Tel: +86-(0)10-87857500 Fax: +86-(0)10-87857529 PC: 100176 No. 8 Boxing 1st Road, Economic & Technological Development Zone, Beijing (II) Tel: +86-(0)10-67511888 Fax: +86-(0)10-67511983 PC: 100176 www.goldwindamerica.com E-mail: [email protected] Goldwind USA, Inc. 200 West Madison Street Suite 2800 Chicago, Illinois, USA Tel: +1 312-948-8050 Fax: +1 312-948-8051 PC: 60601 Xinjiang Goldwind Science & Technology Co., Ltd 107 Shanghai Road, Economic & Technological Development Zone, Urumqi, Xinjiang Tel: +86-(0)991-3767999 PMDD WIND TURBINE Fax: +86-(0)991-3762039 PC: 830026 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. No. 19 Kangding Road, Economic & Technological 1.5MW Development Zone, Beijing (I) Tel: +86-(0)10-87857500 Fax: +86-(0)10-87857529 PC: 100176 No. 8 Boxing 1st Road, Economic & Technological Development Zone, Beijing (II) Tel: +86-(0)10-67511888 Fax: +86-(0)10-67511983 PC: 100176 GOLDWIND 1.5MW PMDD WIND TURBINE SERIES DYNAMIC POWER CURVE GENERAL TECHNICAL SPECIFICATIONS
    [Show full text]
  • 85324630.Pdf
    About NetTantra NetTantra is a creative technology and design company based out of India, US and UK. We provide web based solutions and mobile solutions to various industries like manufacturing, consulting, education. We have expertise in various sectors of the web including an array of server-side languages, OpenSource CMS/Blog frameworks, Linux/UNIX system administration, production server backup and recovery solutions, cloud infrastructure set-up and much more. Our expertise in providing WordPress based solutions has been acclaimed by many of our clients and the OpenSource community. We also provide cloud based solutions like migrating existing applications and building cloud applications for public or private cloud setups. We are known among our clients for on-time delivery and extraordinary quality of service. In mobile based solutions, we have expertise in developing native applications for iOS and Android platforms. We also develop cross-platform mobile applications using Sencha Touch and jQuery Mobile frameworks. 2 of 14 pages Why Hire Us ✔ Technology ◦ We have expertise in the most cutting edge tools and technologies used in the industry with special focus on OpenSource Technologies ◦ We pay special attention to web and network security for all projects ◦ Our team follows highly optimized project delivery life cycles and processes ✔ Cost ◦ We offer the best price to quality ratio ✔ Infrastructure ◦ Advanced workstations ◦ Cutting edge computing and network systems ◦ Power packed online servers ◦ Smart communications systems ◦ Conference halls, CBT and video learning facilities ◦ High-speed uninterrupted Internet connection ✔ Quality of Service ◦ Guaranteed client satisfaction ◦ Real-time customer support with the least turn-around in the industry ◦ Pre-sales technical and business related support to partners and agencies ✔ Ethics and Principles ◦ We ensure confidentiality in all our dealings.
    [Show full text]
  • Next Generation Web Scanning Presentation
    Next generation web scanning New Zealand: A case study First presented at KIWICON III 2009 By Andrew Horton aka urbanadventurer NZ Web Recon Goal: To scan all of New Zealand's web-space to see what's there. Requirements: – Targets – Scanning – Analysis Sounds easy, right? urbanadventurer (Andrew Horton) www.morningstarsecurity.com Targets urbanadventurer (Andrew Horton) www.morningstarsecurity.com Targets What does 'NZ web-space' mean? It could mean: •Geographically within NZ regardless of the TLD •The .nz TLD hosted anywhere •All of the above For this scan it means, IPs geographically within NZ urbanadventurer (Andrew Horton) www.morningstarsecurity.com Finding Targets We need creative methods to find targets urbanadventurer (Andrew Horton) www.morningstarsecurity.com DNS Zone Transfer urbanadventurer (Andrew Horton) www.morningstarsecurity.com Find IP addresses on IRC and by resolving lots of NZ websites 58.*.*.* 60.*.*.* 65.*.*.* 91.*.*.* 110.*.*.* 111.*.*.* 113.*.*.* 114.*.*.* 115.*.*.* 116.*.*.* 117.*.*.* 118.*.*.* 119.*.*.* 120.*.*.* 121.*.*.* 122.*.*.* 123.*.*.* 124.*.*.* 125.*.*.* 130.*.*.* 131.*.*.* 132.*.*.* 138.*.*.* 139.*.*.* 143.*.*.* 144.*.*.* 146.*.*.* 150.*.*.* 153.*.*.* 156.*.*.* 161.*.*.* 162.*.*.* 163.*.*.* 165.*.*.* 166.*.*.* 167.*.*.* 192.*.*.* 198.*.*.* 202.*.*.* 203.*.*.* 210.*.*.* 218.*.*.* 219.*.*.* 222.*.*.* 729,580,500 IPs. More than we want to try. urbanadventurer (Andrew Horton) www.morningstarsecurity.com IP address blocks in the IANA IPv4 Address Space Registry Prefix Designation Date Whois Status [1] -----
    [Show full text]
  • Master Document Template
    Copyright by Krystian Amadeusz Zimowski 2012 The Thesis Committee for Krystian Amadeusz Zimowski Certifies that this is the approved version of the following thesis: Next Generation Wind Energy Harvester to Power Bridge Health Monitoring Systems APPROVED BY SUPERVISING COMMITTEE: Supervisor: Richard H. Crawford Co-supervisor: Kristin L. Wood Next Generation Wind Energy Harvesting to Power Bridge Health Monitoring Systems by Krystian Amadeusz Zimowski, B.S.M.E. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin May 2012 Dedication This thesis is first of all dedicated to my parents, who sacrificed everything for me and for my education. Acknowledgements I would like to acknowledge Dr. Kristin Wood, Dr. Richard Crawford, and Dr. Sharon Wood, for allowing me to work on such a fantastic research project and for mentoring me throughout my graduate studies at The University of Texas at Austin. I am grateful that the National Science Foundation and the National Institute for Standards and Technology (NIST) Technology Innovation Program (TIP) provided funds to address the critical issue of bridge health monitoring systems. I would like also extend a personal thank you to Dr. Dan Jensen at the United States Air Force Academy for granting me the funding to work on this project through a National Science Foundation (NSF) grant for improving student learning using finite element learning modules. Finally, I would like to extend a personal thanks to my fellow mechanical engineers with whom I worked on this project: Sumedh Inamdar, Eric Dierks, and Travis McEvoy.
    [Show full text]
  • Wind Power: Energy of the Future It’S Worth Thinking About
    Wind power: energy of the future It’s worth thinking about. »Energy appears to me to be the first and unique virtue of man.« Wilhelm von Humboldt 2 3 »With methods from the past, there will be no future.« Dr. Bodo Wilkens Wind power on the increase »Environmental protection is an opportunity and not a burden we have to carry.« Helmut Sihler When will the oil run out? Even if experts cannot agree on an exact date, one thing is certain: the era of fossil fuels is coming to an end. In the long term we depend on renewable sources of energy. This is an irrefutable fact, which has culminated in a growing ecological awareness in industry as well as in politics: whereas renewable sources of energy accounted for 4.2 percent of the total consumption of electricity in 1996, the year 2006 registered a proportion of 12 per- cent. And by 2020 this is to be pushed up to 30 percent. The growth of recent years has largely been due to the use of wind power. The speed of technical development over the past 15 years has brought a 20-fold rise in efficiency and right now wind power is the most economical regenerat- ive form there is to produce electricity. In this respect, Germany leads the world: since 1991 more than 19.460 wind power plants have been installed with a wind power capacity of 22.247 MW*. And there is more still planned for the future: away from the coastline, the offshore plants out at sea will secure future electricity supplies.
    [Show full text]
  • Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities Shuangwen (Shawn) Sheng
    Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities Shuangwen (Shawn) Sheng 2016 PHM Society Annual Conference Denver, Colorado October 4, 2016 NREL/PR-5000-67283 Outline . Introduction . Current status . Challenges and opportunities Photo by Lee Jay Fingersh, NREL 17245 2 Introduction: Global Wind Energy Figure from [1] Photo by HC Sorensen, Photo by Iberdrola Renewables, Inc., NREL 16706 Middelgrunden Wind Turbine Cooperative, NREL 17856 3 Reliability of Turbine Subassemblies: Old Statistics Failure/turbine/year and downtime from two large surveys of land-based European wind turbines during 13 years Electrical System LWK Failure Rate, approx 5800 Turbine Years Electrical Control WMEP Failure Rate, approx 15400 Turbine Years Other LWK Downtime, approx 5800 Turbine Years Hydraulic System WMEP Downtime, approx 15400 Turbine Years Yaw System Rotor Hub Mechanical Brake Rotor Blades Gearbox Generator Drive Train Figure from [2] 1 0.75 0.5 0.25 0 2 4 6 8 10 12 14 Failure/turbine/year Downtime per failure (days) • The Wissenschaftliches Mess-und Evaluierungsprogramm (WMEP) database was accomplished from 1989 to 2006 and contains failure statistics from 1,500 wind turbines [3]. • Failure statistics published by Landwirtschaftskammer Schleswig-Holstein (LWK) from 1993 to 2006 contain failure data from more than 650 wind turbines [3]. 4 Outage Duration for Different Subsystems: New Statistics . Downtime caused by premature component/subsystem failures, led by gearboxes, challenges the wind industry and results in an increased cost of energy for wind power. Average Turbine Outage Duration for Failures >1 Hour (days) 6 - Mechanical: yaw systems, mechanical brakes, hydraulic systems, rotor hubs, drivetrain 4 - Electrical: sensors, electrics, control systems.
    [Show full text]
  • Structure, Equipment and Systems for Offshore Wind Farms on the OCS
    Structure, Equipment and Systems for Offshore Wind Farms on the OCS Part 2 of 2 Parts - Commentary pal Author, Houston, Texas Houston, Texas pal Author, Project No. 633, Contract M09PC00015 Prepared for: Minerals Management Service Department of the Interior Dr. Malcolm Sharples, Princi This draft report has not been reviewed by the Minerals Management Service, nor has it been approved for publication. Approval, when given, does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Offshore : Risk & Technology Consulting Inc. December 2009 MINERALS MANAGEMENT SERVICE CONTRACT Structure, Equipment and Systems for Offshore Wind on the OCS - Commentary 2 MMS Order No. M09PC00015 Structure, Equipment and Systems: Commentary Front Page Acknowledgement– Kuhn M. (2001), Dynamics and design optimisation of OWECS, Institute for Wind Energy, Delft Univ. of Technology TABLE OF CONTENTS Authors’ Note, Disclaimer and Invitation:.......................................................................... 5 1.0 OVERVIEW ........................................................................................................... 6 MMS and Alternative Energy Regulation .................................................................... 10 1.1 Existing Standards and Guidance Overview..................................................... 13 1.2 Country Requirements. ....................................................................................
    [Show full text]
  • CHAPTER 6 Design and Development of Megawatt Wind Turbines
    CHAPTER 6 Design and development of megawatt wind turbines Lawrence D. Willey General Electric Energy Wind, USA. Electric power generation is the single most important factor in the prosperity of modern man. Yet, increasing concerns over carbon emissions from burning fossil fuels have brought large-scale renewable energy technologies to the forefront of technological development. Framework for the successful design and develop- ment of large wind turbines (WTs) addresses the world’s power generation needs. The motivation for this work, the broad framework for success, the best approach for product design, various techniques and special considerations, and develop- ment aspects are presented. Horizontal axis WTs operating inland or in near-shore applications are specifi cally addressed. 1 Introduction Supplies of fossil fuels are inadequate to meet the growing need for more power generation, which is driven by increasing demand for electricity [ 1, 2 ]. The hori- zontal axis wind turbine (HAWT) is one of the most economical forms of modern power generation. HAWTs have numerous benefi ts: they conserve dwindling fos- sil fuel resources, reduce harmful emissions, and support a sustainable electric energy infrastructure for posterity. Large wind turbines (WTs) are an engineering challenge; they must endure some of the largest numbers of fatigue cycles for structures while meeting size and cost constraints [49]. New WTs must maximize reliability, availability, maintenance, and serviceability (RAMS) while having the lowest cost of energy (CoE) and highest net present value (NPV) for a customer and an original equipment manufacturer (OEM) [50]. One of the biggest motiva- tions for accelerating technological development of WTs is in support for the U.S.
    [Show full text]
  • IEA Wind Technology Collaboration Programme
    IEA Wind Technology Collaboration Programme 2017 Annual Report A MESSAGE FROM THE CHAIR Wind energy continued its strong forward momentum during the past term, with many countries setting records in cost reduction, deployment, and grid integration. In 2017, new records were set for hourly, daily, and annual wind–generated electricity, as well as share of energy from wind. For example, Portugal covered 110% of national consumption with wind-generated electricity during three hours while China’s wind energy production increased 26% to 305.7 TWh. In Denmark, wind achieved a 43% share of the energy mix—the largest share of any IEA Wind TCP member countries. From 2010-2017, land-based wind energy auction prices dropped an average of 25%, and levelized cost of energy (LCOE) fell by 21%. In fact, the average, globally-weighted LCOE for land-based wind was 60 USD/ MWh in 2017, second only to hydropower among renewable generation sources. As a result, new countries are adopting wind energy. Offshore wind energy costs have also significantly decreased during the last few years. In Germany and the Netherlands, offshore bids were awarded at a zero premium, while a Contract for Differences auction round in the United Kingdom included two offshore wind farms with record strike prices as low as 76 USD/MWh. On top of the previous achievements, repowering and life extension of wind farms are creating new opportunities in mature markets. However, other challenges still need to be addressed. Wind energy continues to suffer from long permitting procedures, which may hinder deployment in many countries. The rate of wind energy deployment is also uncertain after 2020 due to lack of policies; for example, only eight out of the 28 EU member states have wind power policies in place beyond 2020.
    [Show full text]
  • Partially Enclosed Vertical Axis Wind Turbine
    WORCESTER POLYTECHNIC INSTITUTE PROJECT ID: BJS – WS14 Partially Enclosed Vertical Axis Wind Turbine Major Qualifying Project 2013-2014 Paige Archinal, Jefferson Lee, Ryan Pollin, Mark Shooter 4/24/2014 1 Acknowledgments We would like to thank Professor Brian Savilonis for his guidance throughout this project. We would like to thank Herr Peter Hefti for providing and maintaining an excellent working environment and ensuring that we had everything we needed. We would especially like to thank Kevin Arruda and Matt Dipinto for their manufacturing expertise, without which we would certainly not have succeeded in producing a product. 2 Abstract Vertical Axis Wind Turbines (VAWTs) are a renewable energy technology suitable for low-speed and multidirectional wind environments. Their smaller scale and low cut-in speed make this technology well-adapted for distributed energy generation, but performance may still be improved. The addition of a partial enclosure across half the front-facing swept area has been suggested to improve the coefficient of performance, but it undermines the multidirectional functionality. To quantify its potential gains and examine ways to mitigate the losses of unidirectional functionality, a Savonius blade VAWT with an independently rotating enclosure with a passive tail vane control was designed, assembled, and experimentally tested. After analyzing the output of the system under various conditions, it was concluded that this particular enclosure shape drastically reduces the coefficient of performance of a VAWT with Savonius blades. However, the passive tail vane rotated the enclosure to the correct orientation from any offset position, enabling the potential benefits of an advantageous enclosure design in multidirectional wind environments.
    [Show full text]