Chapter 4 Differentiation in the Study of Calculus of Functions of One Variable, the Notions of Continuity, Differentiability and Integrability Play a Central Role

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Differentiation in the Study of Calculus of Functions of One Variable, the Notions of Continuity, Differentiability and Integrability Play a Central Role Chapter 4 Differentiation In the study of calculus of functions of one variable, the notions of continuity, differentiability and integrability play a central role. The previous chapter was devoted to continuity and its consequences and the next chapter will focus on integrability. In this chapter we will define the derivative of a function of one variable and discuss several important consequences of differentiability. For example, we will show that differentiability implies continuity. We will use the definition of derivative to derive a few differentiation formulas but we assume the formulas for differentiating the most common elementary functions are known from a previous course. Similarly, we assume that the rules for differentiating are already known although the chain rule and some of its corollaries are proved in the solved problems. We shall not emphasize the various geometrical and physical applications of the derivative but will concentrate instead on the mathematical aspects of differentiation. In particular, we present several forms of the mean value theorem for derivatives, including the Cauchy mean value theorem which leads to L’Hôpital’s rule. This latter result is useful in evaluating so called indeterminate limits of various kinds. Finally we will discuss the representation of a function by Taylor polynomials. The Derivative Let fx denote a real valued function with domain D containing an L ? neighborhood of a point x0 5 D; i.e. x0 is an interior point of D since there is an L ; 0 such that NLx0 D. Then for any h such that 0 9 |h| 9 L, we can define the difference quotient for f near x0, fx + h ? fx D fx : 0 0 4.1 h 0 h It is well known from elementary calculus (and easy to see from a sketch of the graph of f near x0 ) that Dhfx0 represents the slope of a secant line through the points x0,fx0 and x0 + h,fx0 + h. Then we have Definition (Derivative) The function fx is said to be differentiable at the interior point r c 5 D if lim Dhfc exists. We denote the value of this limit by f c and refer to this as h0 the derivative of fx at x : c. We may also define the derivative of fx at the endpoints of an interval by using one sided limits for Dhfx. The set of points in D where the limit exists is the domain of a new function dy f rx, called the derivative of fx. We shall also use the notation for the derivative of dx fx. This derivative may be variously interpreted as: the slope of the tangent line to the graph of y : fx at the point, x,fx the instantaneous rate of change of y : fx with respect to x. It is important to note that while a secant line is a line through two points whose slope is then well defined, a tangent line is a line characterized by just one point, the point of tangency to the graph. Then the slope of the tangent line is not well defined but can only be defined in terms of a limit procedure. Similarly, the average speed of an object over a given time interval is well defined (it is the distance travelled during the time interval divided by the length of the time interval). Instantaneous speed at a given instant is not well defined but, 1 like the slope of the tangent line to a curve, can only be defined by a limit procedure. Definition (Derivatives of higher order) If the function f rx is differentiable, then its d2y derivative is denoted by f" x or . This is called the second derivative of dx 2 dny y : fx. We will denote derivatives of order higher than 2 by fnx or for n 5 N. dx n Example Derivatives (a) In an elementary calculus course, we derive formulas for the derivatives of many elementary functions. The following functions are differentiable at each point where they are defined: fx : xp f rx : px p?1 fx : Sin x f rx : Cos x fx : Cos x f rx : ?Sin x fx : ax, a ; 0 f rx : ax ln a : r : 1 fx ln x f x x (b)The following functions are continuous for all x, but the derivative fails to exist at the indicated points: fx : |x| is not differentiable at x : 0 since lim Dhf0 fails to exist (see problem 4.4 ) h0 fx : x s not differentiable at x : 0 since lim Dhf0 tends to +K as h 0 h0 The examples in (b) show that there are continuous functions that are not differentiable. The following theorem shows that there are no differentiable functions that fail to be continuous. Theorem 4.1 If fx is differentiable at x : c in D, then fx is continuous at x : c. Rules for Differentiation In elementary calculus we learn differentiation formulas for commonly occurring functions like the ones in example 4.1(a). In addition, we learn differentiation rules which allow us to compute derivatives of various combinations of functions when the derivatives of the separate functions are known. Theorem 4.2 (Derivatives of sums, products, quotients) Suppose fx and gx are differentiable at x : c in their common domain, D. Then 1) d C f + C gc : C f rc + C g rc for all constants C ,C dx 1 2 1 2 1 2 2) d f 6 gc : f rc 6 gc + fc 6 g rc 4.2 dx f f rc 6 gc ? fc 6 g rc 3) d c : if gc é 0. dx g gc2 Theorem 4.3 (Chain Rule) Suppose fx is differentiable at x : c and gx is differentiable at 2 y : fc. Then the composed function, Fx : gfx is differentiable at x : c and F rc : g rfc 6 f rc. Corollary 4.4 (Derivative of the inverse) Suppose f is strictly monotone and continuous on interval I. Then the inverse function g : f?1 is strictly monotone and continuous on the interval J : fI. Moreover, if f is differentiable at x : c in I and f rc é 0, then g is differentiable at d : fc and grd : 1 . f rc Corollary 4.5 (Derivative of parametric equations) Suppose x : ft and y : gt are differentiable functions of t for a t b, and that f rt é 0 for a t b. Then r dy : dy /dt : g t dx dx /dt f rt Consequences of Differentiability Just as there were a number of useful consequences of the property of continuity, there are similar consequences associated with differentiability. Local Extreme Points A point c in the domain D of a function fx is said to be a local maximum for fx if for some J ; 0, we have fc fx for all x 5 NJc V D. If fc fx for all x 5 NJc V D, then c is said to be a local minimum for fx. We say that c 5 D is a local extreme point for fx if it is either a local maximum or a local minimum. Theorem 4.6 (Extreme Points) Suppose fx is defined and continuous on the interval I and suppose c 5 I is a local extreme point for fx. Then exactly one of the following assertions must hold: i) c is an endpoint of the interval I ii) c is an interior point of I and f rc : 0 iii) c is an interior point of I but f rc fails to exist In an elementary calculus course students are taught that in order to find the extreme points of a function it is just a matter of computing the function’s derivative and setting it equal to zero. This theorem asserts that the extreme points of a function need not always be located at a point where its derivative is zero.(see problem 4.27). Mean Value Theorem for Derivatives There are several versions of one result, all of which are usually referred to as the mean value theorem for derivatives. The simplest version is known as Rolle’s theorem. Corollaries 4.8 and 4.9 and theorem 4.10 are generalizations of Rolle’s theorem. Theorem 4.7 (Rolle’s theorem) Suppose fx is continuous on the closed interval, a,b, and f is differentiable on the open interval a,b. Suppose further that fa : fb : 0. Then there exists a point, c 5 a,b, where f rc : 0. Corollary 4.8 (Mean value theorem for derivatives) Suppose fx is continuous on the closed 3 interval, a,b, and f is differentiable on the open interval a,b. Then there exists a point, c 5 a,b, where fb ? fa : f rcb ? a Corollary 4.9 Suppose fx is continuous on the closed interval, a,b, and f is differentiable on the open interval a,b. Suppose further that f rx : 0 for all x 5 a,b. Then f is constant on a,b. Theorem 4.10 (Cauchy’s Mean Value theorem) Suppose fx and gx continuous on the closed interval, a,b, and are differentiable on the open interval a,b. Suppose further that f rx,g rx never vanish simultaneously and that ga é gb. Then there exists a point, c 5 a,b, where ? r fb fa : f c gb ? ga g rc Indeterminate Forms A limit of a quotient in which the numerator and denominator tend to zero simultaneously is said to be an indeterminate limit of the form 0 . Often, such limits can be evaluated by 0 means of a corollary of the Cauchy mean value theorem known as L’Hôpital ’s rule .
Recommended publications
  • Year 6 Local Linearity and L'hopitals.Notebook December 04, 2018
    Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 New Divider! ­ Application of Derivatives: Local Linearity and L'Hopitals Local Linear Approximation Do Now: For each sketch the function, write the equation of the tangent line at x = 0 and include the tangent line in your sketch. 1) 2) In general, if a function f is differentiable at an x, then a sufficiently magnified portion of the graph of f centered at the point P(x, f(x)) takes on the appearance of a ______________ line segment. For this reason, a function that is differentiable at x is sometimes said to be locally linear at x. 1 Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 How is this useful? We are pretty good at finding the equations of tangent lines for various functions. Question: Would you rather evaluate linear functions or crazy ridiculous functions such as higher order polynomials, trigonometric, logarithmic, etc functions? Evaluate sec(0.3) The idea is to use the equation of the tangent line to a point on the curve to help us approximate the function values at a specific x. Get it??? Probably not....here is an example of a problem I would like us to be able to approximate by the end of the class. Without the use of a calculator approximate . 2 Year 6 Local Linearity and L'Hopitals.notebook December 04, 2018 Local Linear Approximation General Proof Directions would say, evaluate f(a). If f(x) you find this impossible for some y reason, then that's how you would recognize we need to use local linear approximation! You would: 1) Draw in a tangent line at x = a.
    [Show full text]
  • Circles Project
    Circles Project C. Sormani, MTTI, Lehman College, CUNY MAT631, Fall 2009, Project X BACKGROUND: General Axioms, Half planes, Isosceles Triangles, Perpendicular Lines, Con- gruent Triangles, Parallel Postulate and Similar Triangles. DEFN: A circle of radius R about a point P in a plane is the collection of all points, X, in the plane such that the distance from X to P is R. That is, C(P; R) = fX : d(X; P ) = Rg: Note that a circle is a well defined notion in any metric space. We say P is the center and R is the radius. If d(P; Q) < R then we say Q is an interior point of the circle, and if d(P; Q) > R then Q is an exterior point of the circle. DEFN: The diameter of a circle C(P; R) is a line segment AB such that A; B 2 C(P; R) and the center P 2 AB. The length AB is also called the diameter. THEOREM: The diameter of a circle C(P; R) has length 2R. PROOF: Complete this proof using the definition of a line segment and the betweenness axioms. DEFN: If A; B 2 C(P; R) but P2 = AB then AB is called a chord. THEOREM: A chord of a circle C(P; R) has length < 2R unless it is the diameter. PROOF: Complete this proof using axioms and the above theorem. DEFN: A line L is said to be a tangent line to a circle, if L \ C(P; R) is a single point, Q. The point Q is called the point of contact and L is said to be tangent to the circle at Q.
    [Show full text]
  • Anti-Chain Rule Name
    Anti-Chain Rule Name: The most fundamental rule for computing derivatives in calculus is the Chain Rule, from which all other differentiation rules are derived. In words, the Chain Rule states that, to differentiate f(g(x)), differentiate the outside function f and multiply by the derivative of the inside function g, so that d f(g(x)) = f 0(g(x)) · g0(x): dx The Chain Rule makes computation of nearly all derivatives fairly easy. It is tempting to think that there should be an Anti-Chain Rule that makes antidiffer- entiation as easy as the Chain Rule made differentiation. Such a rule would just reverse the process, so instead of differentiating f and multiplying by g0, we would antidifferentiate f and divide by g0. In symbols, Z F (g(x)) f(g(x)) dx = + C: g0(x) Unfortunately, the Anti-Chain Rule does not exist because the formula above is not Z always true. For example, consider (x2 + 1)2 dx. We can compute this integral (correctly) by expanding and applying the power rule: Z Z (x2 + 1)2 dx = x4 + 2x2 + 1 dx x5 2x3 = + + x + C 5 3 However, we could also think about our integrand above as f(g(x)) with f(x) = x2 and g(x) = x2 + 1. Then we have F (x) = x3=3 and g0(x) = 2x, so the Anti-Chain Rule would predict that Z F (g(x)) (x2 + 1)2 dx = + C g0(x) (x2 + 1)3 = + C 3 · 2x x6 + 3x4 + 3x2 + 1 = + C 6x x5 x3 x 1 = + + + + C 6 2 2 6x Since these answers are different, we conclude that the Anti-Chain Rule has failed us.
    [Show full text]
  • Continuous Functions, Smooth Functions and the Derivative C 2012 Yonatan Katznelson
    ucsc supplementary notes ams/econ 11a Continuous Functions, Smooth Functions and the Derivative c 2012 Yonatan Katznelson 1. Continuous functions One of the things that economists like to do with mathematical models is to extrapolate the general behavior of an economic system, e.g., forecast future trends, from theoretical assumptions about the variables and functional relations involved. In other words, they would like to be able to tell what's going to happen next, based on what just happened; they would like to be able to make long term predictions; and they would like to be able to locate the extreme values of the functions they are studying, to name a few popular applications. Because of this, it is convenient to work with continuous functions. Definition 1. (i) The function y = f(x) is continuous at the point x0 if f(x0) is defined and (1.1) lim f(x) = f(x0): x!x0 (ii) The function f(x) is continuous in the interval (a; b) = fxja < x < bg, if f(x) is continuous at every point in that interval. Less formally, a function is continuous in the interval (a; b) if the graph of that function is a continuous (i.e., unbroken) line over that interval. Continuous functions are preferable to discontinuous functions for modeling economic behavior because continuous functions are more predictable. Imagine a function modeling the price of a stock over time. If that function were discontinuous at the point t0, then it would be impossible to use our knowledge of the function up to t0 to predict what will happen to the price of the stock after time t0.
    [Show full text]
  • 9.2. Undoing the Chain Rule
    < Previous Section Home Next Section > 9.2. Undoing the Chain Rule This chapter focuses on finding accumulation functions in closed form when we know its rate of change function. We’ve seen that 1) an accumulation function in closed form is advantageous for quickly and easily generating many values of the accumulating quantity, and 2) the key to finding accumulation functions in closed form is the Fundamental Theorem of Calculus. The FTC says that an accumulation function is the antiderivative of the given rate of change function (because rate of change is the derivative of accumulation). In Chapter 6, we developed many derivative rules for quickly finding closed form rate of change functions from closed form accumulation functions. We also made a connection between the form of a rate of change function and the form of the accumulation function from which it was derived. Rather than inventing a whole new set of techniques for finding antiderivatives, our mindset as much as possible will be to use our derivatives rules in reverse to find antiderivatives. We worked hard to develop the derivative rules, so let’s keep using them to find antiderivatives! Thus, whenever you have a rate of change function f and are charged with finding its antiderivative, you should frame the task with the question “What function has f as its derivative?” For simple rate of change functions, this is easy, as long as you know your derivative rules well enough to apply them in reverse. For example, given a rate of change function …. … 2x, what function has 2x as its derivative? i.e.
    [Show full text]
  • A Brief Summary of Math 125 the Derivative of a Function F Is Another
    A Brief Summary of Math 125 The derivative of a function f is another function f 0 defined by f(v) − f(x) f(x + h) − f(x) f 0(x) = lim or (equivalently) f 0(x) = lim v!x v − x h!0 h for each value of x in the domain of f for which the limit exists. The number f 0(c) represents the slope of the graph y = f(x) at the point (c; f(c)). It also represents the rate of change of y with respect to x when x is near c. This interpretation of the derivative leads to applications that involve related rates, that is, related quantities that change with time. An equation for the tangent line to the curve y = f(x) when x = c is y − f(c) = f 0(c)(x − c). The normal line to the curve is the line that is perpendicular to the tangent line. Using the definition of the derivative, it is possible to establish the following derivative formulas. Other useful techniques involve implicit differentiation and logarithmic differentiation. d d d 1 xr = rxr−1; r 6= 0 sin x = cos x arcsin x = p dx dx dx 1 − x2 d 1 d d 1 ln jxj = cos x = − sin x arccos x = −p dx x dx dx 1 − x2 d d d 1 ex = ex tan x = sec2 x arctan x = dx dx dx 1 + x2 d 1 d d 1 log jxj = ; a > 0 cot x = − csc2 x arccot x = − dx a (ln a)x dx dx 1 + x2 d d d 1 ax = (ln a) ax; a > 0 sec x = sec x tan x arcsec x = p dx dx dx jxj x2 − 1 d d 1 csc x = − csc x cot x arccsc x = − p dx dx jxj x2 − 1 d product rule: F (x)G(x) = F (x)G0(x) + G(x)F 0(x) dx d F (x) G(x)F 0(x) − F (x)G0(x) d quotient rule: = chain rule: F G(x) = F 0G(x) G0(x) dx G(x) (G(x))2 dx Mean Value Theorem: If f is continuous on [a; b] and differentiable on (a; b), then there exists a number f(b) − f(a) c in (a; b) such that f 0(c) = .
    [Show full text]
  • Secant Lines TEACHER NOTES
    TEACHER NOTES Secant Lines About the Lesson In this activity, students will observe the slopes of the secant and tangent line as a point on the function approaches the point of tangency. As a result, students will: • Determine the average rate of change for an interval. • Determine the average rate of change on a closed interval. • Approximate the instantaneous rate of change using the slope of the secant line. Tech Tips: Vocabulary • This activity includes screen • secant line captures taken from the TI-84 • tangent line Plus CE. It is also appropriate for use with the rest of the TI-84 Teacher Preparation and Notes Plus family. Slight variations to • Students are introduced to many initial calculus concepts in this these directions may be activity. Students develop the concept that the slope of the required if using other calculator tangent line representing the instantaneous rate of change of a models. function at a given value of x and that the instantaneous rate of • Watch for additional Tech Tips change of a function can be estimated by the slope of the secant throughout the activity for the line. This estimation gets better the closer point gets to point of specific technology you are tangency. using. (Note: This is only true if Y1(x) is differentiable at point P.) • Access free tutorials at http://education.ti.com/calculato Activity Materials rs/pd/US/Online- • Compatible TI Technologies: Learning/Tutorials • Any required calculator files can TI-84 Plus* be distributed to students via TI-84 Plus Silver Edition* handheld-to-handheld transfer. TI-84 Plus C Silver Edition TI-84 Plus CE Lesson Files: * with the latest operating system (2.55MP) featuring MathPrint TM functionality.
    [Show full text]
  • Visual Differential Calculus
    Proceedings of 2014 Zone 1 Conference of the American Society for Engineering Education (ASEE Zone 1) Visual Differential Calculus Andrew Grossfield, Ph.D., P.E., Life Member, ASEE, IEEE Abstract— This expository paper is intended to provide = (y2 – y1) / (x2 – x1) = = m = tan(α) Equation 1 engineering and technology students with a purely visual and intuitive approach to differential calculus. The plan is that where α is the angle of inclination of the line with the students who see intuitively the benefits of the strategies of horizontal. Since the direction of a straight line is constant at calculus will be encouraged to master the algebraic form changing techniques such as solving, factoring and completing every point, so too will be the angle of inclination, the slope, the square. Differential calculus will be treated as a continuation m, of the line and the difference quotient between any pair of of the study of branches11 of continuous and smooth curves points. In the case of a straight line vertical changes, Δy, are described by equations which was initiated in a pre-calculus or always the same multiple, m, of the corresponding horizontal advanced algebra course. Functions are defined as the single changes, Δx, whether or not the changes are small. valued expressions which describe the branches of the curves. However for curves which are not straight lines, the Derivatives are secondary functions derived from the just mentioned functions in order to obtain the slopes of the lines situation is not as simple. Select two pairs of points at random tangent to the curves.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • CHAPTER 3: Derivatives
    CHAPTER 3: Derivatives 3.1: Derivatives, Tangent Lines, and Rates of Change 3.2: Derivative Functions and Differentiability 3.3: Techniques of Differentiation 3.4: Derivatives of Trigonometric Functions 3.5: Differentials and Linearization of Functions 3.6: Chain Rule 3.7: Implicit Differentiation 3.8: Related Rates • Derivatives represent slopes of tangent lines and rates of change (such as velocity). • In this chapter, we will define derivatives and derivative functions using limits. • We will develop short cut techniques for finding derivatives. • Tangent lines correspond to local linear approximations of functions. • Implicit differentiation is a technique used in applied related rates problems. (Section 3.1: Derivatives, Tangent Lines, and Rates of Change) 3.1.1 SECTION 3.1: DERIVATIVES, TANGENT LINES, AND RATES OF CHANGE LEARNING OBJECTIVES • Relate difference quotients to slopes of secant lines and average rates of change. • Know, understand, and apply the Limit Definition of the Derivative at a Point. • Relate derivatives to slopes of tangent lines and instantaneous rates of change. • Relate opposite reciprocals of derivatives to slopes of normal lines. PART A: SECANT LINES • For now, assume that f is a polynomial function of x. (We will relax this assumption in Part B.) Assume that a is a constant. • Temporarily fix an arbitrary real value of x. (By “arbitrary,” we mean that any real value will do). Later, instead of thinking of x as a fixed (or single) value, we will think of it as a “moving” or “varying” variable that can take on different values. The secant line to the graph of f on the interval []a, x , where a < x , is the line that passes through the points a, fa and x, fx.
    [Show full text]
  • A General Chain Rule for Distributional Derivatives
    proceedings of the american mathematical society Volume 108, Number 3, March 1990 A GENERAL CHAIN RULE FOR DISTRIBUTIONAL DERIVATIVES L. AMBROSIO AND G. DAL MASO (Communicated by Barbara L. Keyfitz) Abstract. We prove a general chain rule for the distribution derivatives of the composite function v(x) = f(u(x)), where u: R" —>Rm has bounded variation and /: Rm —>R* is Lipschitz continuous. Introduction The aim of the present paper is to prove a chain rule for the distributional derivative of the composite function v(x) = f(u(x)), where u: Q —>Rm has bounded variation in the open set ilcR" and /: Rw —>R is uniformly Lip- schitz continuous. Under these hypotheses it is easy to prove that the function v has locally bounded variation in Q, hence its distributional derivative Dv is a Radon measure in Q with values in the vector space Jz? m of all linear maps from R" to Rm . The problem is to give an explicit formula for Dv in terms of the gradient Vf of / and of the distributional derivative Du . To illustrate our formula, we begin with the simpler case, studied by A. I. Vol pert, where / is continuously differentiable. Let us denote by Su the set of all jump points of u, defined as the set of all xef! where the approximate limit u(x) does not exist at x. Then the following identities hold in the sense of measures (see [19] and [20]): (0.1) Dv = Vf(ü)-Du onß\SH, and (0.2) Dv = (f(u+)-f(u-))®vu-rn_x onSu, where vu denotes the measure theoretical unit normal to Su, u+ , u~ are the approximate limits of u from both sides of Su, and %?n_x denotes the (n - l)-dimensional Hausdorff measure.
    [Show full text]
  • March 14 Math 1190 Sec. 62 Spring 2017
    March 14 Math 1190 sec. 62 Spring 2017 Section 4.5: Indeterminate Forms & L’Hopital’sˆ Rule In this section, we are concerned with indeterminate forms. L’Hopital’sˆ Rule applies directly to the forms 0 ±∞ and : 0 ±∞ Other indeterminate forms we’ll encounter include 1 − 1; 0 · 1; 11; 00; and 10: Indeterminate forms are not defined (as numbers) March 14, 2017 1 / 61 Theorem: l’Hospital’s Rule (part 1) Suppose f and g are differentiable on an open interval I containing c (except possibly at c), and suppose g0(x) 6= 0 on I. If lim f (x) = 0 and lim g(x) = 0 x!c x!c then f (x) f 0(x) lim = lim x!c g(x) x!c g0(x) provided the limit on the right exists (or is 1 or −∞). March 14, 2017 2 / 61 Theorem: l’Hospital’s Rule (part 2) Suppose f and g are differentiable on an open interval I containing c (except possibly at c), and suppose g0(x) 6= 0 on I. If lim f (x) = ±∞ and lim g(x) = ±∞ x!c x!c then f (x) f 0(x) lim = lim x!c g(x) x!c g0(x) provided the limit on the right exists (or is 1 or −∞). March 14, 2017 3 / 61 The form 1 − 1 Evaluate the limit if possible 1 1 lim − x!1+ ln x x − 1 March 14, 2017 4 / 61 March 14, 2017 5 / 61 March 14, 2017 6 / 61 Question March 14, 2017 7 / 61 l’Hospital’s Rule is not a ”Fix-all” cot x Evaluate lim x!0+ csc x March 14, 2017 8 / 61 March 14, 2017 9 / 61 Don’t apply it if it doesn’t apply! x + 4 6 lim = = 6 x!2 x2 − 3 1 BUT d (x + 4) 1 1 lim dx = lim = x!2 d 2 x!2 2x 4 dx (x − 3) March 14, 2017 10 / 61 Remarks: I l’Hopital’s rule only applies directly to the forms 0=0, or (±∞)=(±∞).
    [Show full text]