Gediktepe 2019 Prefeasibility Study (PFS19) and Should Be Read in Its Entirety and Must Accompany Every Copy Made of This Report (The Technical Report)

Total Page:16

File Type:pdf, Size:1020Kb

Gediktepe 2019 Prefeasibility Study (PFS19) and Should Be Read in Its Entirety and Must Accompany Every Copy Made of This Report (The Technical Report) Alacer Corporate P: 303-292-1299 7001 E. Belleview Ave., Suite 800 Denver, Colorado 80237 www.AlacerGold.com April 3, 2019 It was brought to our attention that there was a typographical error in Table 22.11 on page 323-324 of the Gediktepe NI 43-101 Technical Report filed on April 3, 2019. The attached Gediktepe NI 43-101 Technical Report corrects this error. This notice is an integral component of the Gediktepe 2019 Prefeasibility Study (PFS19) and should be read in its entirety and must accompany every copy made of this report (the Technical Report). The Technical Report has been prepared using the Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects. The Technical Report has been prepared for Alacer Gold Corp. (Alacer) by OreWin Pty Ltd (OreWin). The Technical Report is based on information and data supplied to OreWin by Alacer and other parties and where necessary OreWin has assumed that the supplied data and information are accurate and complete. The conclusions and estimates stated in the Technical Report are to the accuracy stated in the Technical Report only and rely on assumptions stated in the Technical Report. The results of further work may indicate that the conclusions, estimates and assumptions in the Technical Report need to be revised or reviewed. OreWin has used its experience and industry expertise to produce the estimates and approximations in the Technical Report. Where OreWin has made those estimates and approximations, it does not warrant the accuracy of those amounts and it should also be noted that all estimates and approximations contained in the Technical Report will be prone to fluctuations with time and changing industry circumstances. The Technical Report should be construed in light of the methodology, procedures, and techniques used in its preparation. Sections or parts of the Technical Report should not be read or removed from their original context. The Technical Report is intended to be used by Alacer, subject to the terms and conditions of its contract with OreWin. Recognising that Alacer has legal and regulatory obligations, OreWin has consented to the filing of the Technical Report with Canadian Securities Administrators and its System for Electronic Document Analysis and Retrieval (SEDAR). Except for the purposes legislated under provincial securities laws, any other use of this report by any third party is at that party's sole risk. Project Name: Gediktepe Title: Gediktepe 2019 Prefeasibility Study Location: Balıkesir Province, Turkey Effective Date of Technical Report: 26 March 2019 Effective Date of Mineral Resources: 5 March 2019 Effective Date of Drilling Database: 21 March 2018 Effective Date of Mineral Reserves: 5 March 2019 Qualified Persons: • Bernard Peters, BEng (Mining), FAusIMM (201743), employed by OreWin Pty Ltd as Technical Director – Mining, was responsible for the overall preparation, mining and, the Mineral Reserve estimates in Sections: 1.1, 1.2, 1.6, 1.7, 1.10, 1.11; 2; 3; 4; 5; 15; 16; 19; 20; 21.1, 21.2.13, 21.3.1, 21.3.3; 22; 23; 24; 25; 26, 26.2, 27. • Sharron Sylvester, BSc (Geology), MAIG, RPGeo (10125), employed by OreWin Pty Ltd as Technical Director – Geology, was responsible for Mineral Resources in Sections: 1.3 to 1.5, 1.11; 2; 3; 6 to 12; 14; 25; 26.1; 27. • Peter Allen, BEng (Metallurgy), MAusIMM (CP 103637), employed by GR Engineering Services as Manager – Technical Services, was responsible for process plant and infrastructure in Sections: 1.8, 1.9,1.11; 2; 3; 13; 17; 18; 21.2.1 to 21.2.12, 21.2.14, 21.3.2; 25; 26.3, 26.4; 27. 18018GediktepePFS190331A_FINAL.docx ii Project Name: Gediktepe Title: Gediktepe 2019 Prefeasibility Study Location: Balıkesir Province, Turkey Effective Date of Technical Report: 26 March 2019 Effective Date of Mineral Resources: 5 March 2019 Effective Date of Drilling Database: 21 March 2018 Effective Date of Mineral Reserves: 5 March 2019 /s Bernard Peters Date of Signing: 26 March 2019 Bernard Peters, BEng (Mining), FAusIMM (201743), employed by OreWin Pty Ltd as Technical Director – Mining /s Sharron Sylvester Date of Signing: 26 March 2019 Sharron Sylvester, BSc (Geology), MAIG, RPGeo (10125), employed by OreWin Pty Ltd as Technical Director – Geology /s Peter Allen Date of Signing: 26 March 2019 Peter Allen, BEng (Metallurgy), MAusIMM (CP 103637), employed by GR Engineering Services as Manager – Technical Services 18018GediktepePFS190331A_FINAL.docx iii 1 SUMMARY .............................................................................................................................................. 1 1.1 Introduction .............................................................................................................................. 1 1.2 Property Description and Ownership .................................................................................. 2 1.3 Geology and Mineralisation ................................................................................................. 3 1.3.1 Geology ................................................................................................................................ 3 1.3.2 Mineralisation....................................................................................................................... 4 1.4 Status of Exploration, Development, and Operations ..................................................... 4 1.4.1 PFS19 Drillhole Dataset ....................................................................................................... 5 1.5 Mineral Resources ................................................................................................................... 6 1.6 Mineral Reserves ..................................................................................................................... 7 1.7 Mining Methods....................................................................................................................... 7 1.8 Recovery Methods ............................................................................................................... 11 1.9 Site Infrastructure .................................................................................................................. 14 1.10 Financial Results .................................................................................................................... 14 1.11 Conclusions and Recommendations ............................................................................... 19 2 INTRODUCTION................................................................................................................................... 22 3 RELIANCE ON OTHER EXPERTS ......................................................................................................... 24 3.1 Mineral Tenure ....................................................................................................................... 24 3.2 Surface Rights ........................................................................................................................ 24 3.3 Market Studies and Contracts ........................................................................................... 24 3.4 Environmental and Work Programme Permitting ........................................................... 24 3.5 Taxation and Royalties ......................................................................................................... 25 4 PROPERTY DESCRIPTION AND LOCATION ..................................................................................... 26 4.1 Project Ownership ................................................................................................................ 26 4.2 Royalties or Encumbrances ................................................................................................ 27 5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY ...... 28 5.1 Location and Access ........................................................................................................... 28 5.2 Climate ................................................................................................................................... 31 5.3 Local Resources .................................................................................................................... 31 5.4 Infrastructure .......................................................................................................................... 32 5.5 Physiography ......................................................................................................................... 32 6 HISTORY ................................................................................................................................................ 34 7 GEOLOGICAL SETTING AND MINERALISATION ............................................................................. 36 18018GediktepePFS190331A_FINAL.docx iv 7.1 Regional Geology................................................................................................................. 36 7.2 Deposit Geology ................................................................................................................... 38 7.2.1 Dacite and Pyroclastics (Lower–Middle Miocene) .................................................... 40 7.2.2 Calcschist (Upper Paleozoic) ......................................................................................... 42 7.2.3 Quartz–Feldspar Schist (Upper Paleozoic) ................................................................... 42
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Back Ground of Gold Leaching Reagent ---Florrea Goldix
    SHENYANG FLORREA CHEMICALS CO., LTD 1719, BLD B,Hai‐li‐de Mansion,NO.135,ChangJiang Street, Huanggu District, Shenyang, Liaoning Province, P. R . China Tel: 0086 24 31515191 Mobile: 0086 136 0982 1616 Fax: 0086 24 31513277 Skype: yang(florrea) ISO 9001 Certified NO. : 086911Q E‐mail: [email protected] www.florrea.com MSN: [email protected] ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ BACK GROUND OF GOLD LEACHING REAGENT -----FLORREA GOLDIX 567 (Excellent Cyanide Replacement , Environmentally friendly) Florrea Gold Lixiviant GOLDIX 567‐‐‐ Environmentally friendly Gold Leaching without cyanide. The various oxidized gold ore were leached with various lixiviants and Florrea Goldix 567 is the best lixiviant substitute for cyanide as gold lixiviant at present, meanwhile gole leaching speeds with organic chlorine C was 8 times of that with cyanide Gold cyanidation, also called cyanide leaching, is a metallurgical technique for extracting gold from low‐grade ore by converting the gold to a water soluble coordination complex. It is the most commonly used process for gold extraction. Due to the highly poisonous nature of cyanide, the process is controversial and its usage is banned in a number of countries and territories. It uses cyanide to dissolve the gold within the rock, which, itself, is not soluble in cyanide. The gold is then drawn out in a liquid form that can be treated to remove the cyanide. Almost 90% of all gold extracted commercially is done so by cyanidation. The process has been controversial since its inception due to the poisonous nature of cyanide and the threat it poses to the environment and the people working in the extraction facilities.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Background for Nepa Reviewers: Non-Coal Mining Operations
    EPA/530//R-95/043 NTIS/PB96/109/103 TECHNICAL DOCUMENT BACKGROUND FOR NEPA REVIEWERS: NON-COAL MINING OPERATIONS December 1994 U.S. Environmental Protection Agency Office of Solid Waste Special Waste Branch 401 M Street, SW Washington, DC 20460 Disclaimer and Acknowledgements This document was prepared by the U.S. Environmental Protection Agency (EPA). The mention of company or product names is not to be considered an endorsement by the U.S. Government or by the EPA. This Technical Document consists of nine sections. The first is EPA's overview of mining and the statutory and regulatory background. That is followed by a description of mining activities and their potential environmental impacts. The remaining sections cover specific environmental concerns, environmental monitoring, and pollution prevention. Also provided are a list of contacts, glossary, and references. This report was distributed for review to the U.S. Department of the Interior's Bureau of Mines, Bureau of Land Management, and National Park Service; the U.S. Department of Agriculture's Forest Service; Western Governors Association; and other industry and public interest groups. The use of the terms "extraction," "beneficiation," and "mineral processing" is not intended to classify any waste stream for the purposes of regulatory interpretation or application. Rather, these terms are used in the context of common industry terminology. Background for NEPA Reviewers TABLE OF CONTENTS Page INTRODUCTION ..................................................................1-1
    [Show full text]
  • Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (Pgms)
    minerals Review Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (PGMs) Kirsten C. Corin 1,* , Belinda J. McFadzean 1, Natalie J. Shackleton 2 and Cyril T. O’Connor 1 1 Centre for Minerals Research, Chemical Engineering Department, University of Cape Town, P Bag X3, Rondebosch, Cape Town 7700, South Africa; [email protected] (B.J.M.); [email protected] (C.T.O.) 2 Minerals Expertise Tech Pty Ltd., Germiston 2007, South Africa; [email protected] * Correspondence: [email protected] Abstract: In order to increase the recovery of PGMs by flotation, it is necessary to optimise the liberation of the key minerals in which the platinum group elements (PGEs) are contained which include sulphides, arsenides, tellurides, and ferroalloys among others, while at the same time ensuring the optimal depression of gangue minerals. In order to achieve this, comminution circuits usually consist of two or three stages of milling, in which the first stage is autogeneous, followed by ball milling. Further liberation is achieved in subsequent stages using ultra-fine grinding. Each comminution stage is followed by flotation in the so-called MF2 or MF3 circuits. While this staged process increases overall recoveries, overgrinding may occur, hence creating problems associated with fine particle flotation. This paper presents an overview of the mineralogy of most of the more significant PGM ores processed in South Africa and the various technologies used in comminution circuits. The paper then summarises the methodology used in flotation circuits to optimise recovery Citation: Corin, K.C.; McFadzean, of fine particles in terms of the collectors, depressants, and frothers used.
    [Show full text]
  • Evolution of the Isamill™ Into Magnetite Processing
    EVOLUTION OF THE ISAMILL™ INTO MAGNETITE PROCESSING Greg Rasmussen, Xstrata Technology Pty Ltd Tommy Do , Ernest Henry Mining Michael Larson, Xstrata Technology Pty Ltd Katie Barns, Xstrata Technology Pty Ltd Xstrata Technology • Mount Isa Mines (MIM), a large Australian mining company, was acquired by Xstrata in 2003 who then merged with Glencore in 2013 • MIM internal technology group was re-named Xstrata Technology (XT) and became an independent technology developer and supplier to the global minerals industry with 250 staff worldwide • The equipment and processes which are marketed by XT are developed in our own operations • XT offers full-package solutions including: • Equipment and processes • Engineering • Commissioning and Training • Dedicated after-market support IsaMill™ Technology Development ™ • Development of IsaMill driven by inability Broken Hill to efficiently treat fine grained orebodies • Late 1980s, Xstrata required 7µm grind for new Pb/Zn orebodies in Australia • Conventional mining technologies tested (1975-1990), but 0 40 micron − Too high power consumption to achieve target size McArthur River − Ball/tower mills ineffective below 20-30μm − Negative influence of steel grinding on flotation 0 40 micron IsaMill™ Technology Development A technology was found... • Horizontal Bead Mills − Used in industries other than mining (pharmaceuticals, paint, food, etc.) − Small, batch scale − Very expensive and exotic media types • Cross-over into mining required: − Much larger scale − Continuous operation − Ability to use cheap,
    [Show full text]
  • Regrinding and Fine Grinding Technology - the Facts and Myths
    A review of regrinding and fine grinding technology - the facts and myths Dr Alex Jankovic, Metso Minerals Process Technology Asia-Pacific, [email protected] ABSTRACT Stirred milling technology is used extensively for fine grinding in the ceramic, paint and pharmaceutical industrials. It has been recently adopted by the mining industry. Specific conditions in the mining industry require somewhat different operation of this technology. However, the basic principles of operation are the same and the accumulated knowledge and experience developed in these other industries could be used to assist mining operations to get the most benefit from the stirred milling technology. This paper presents some of the important aspects of stirred milling operation discussed in the literature and not commonly known within the mining industry: grinding media motion, active grinding volume, wear of grinding media and energy transfer, stress intensity, scale-up issues and flow limitations. The intention is to introduce a “different perspective” of stirred milling technology, in particular highlighting its potential benefits and limitations. HISTORY Stirred milling technology may be regarded as relatively new in minerals processing, however it is a mature and extensively used technology in the ceramic, paint and pharmaceutical industries. The latest development of this technology is in the area of “Nano-grinding” for grinding down to nano-sizes. One may say that stirred mills used today in mining and minerals processing are equivalent to the early models of stirred mills used in parallel industries. The most commonly used stirred mills in mining and minerals processing are the VERTIMILL®, STIRRED MEDIA DETRITOR (SMD®) and ISAMILL® and a brief history of their development is given below.
    [Show full text]
  • Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form
    The Platform for Cooperation on Tax DISCUSSION DRAFT: Addressing the Information Gaps on Prices of Minerals Sold in an Intermediate Form Feedback Period 24 January 2017 – 21 February 2017 Organisation for Economic Co-operation and Development (OECD) World Bank Group (WBG) International Monetary Fund (IMF) United Nations (UN) 1 This discussion draft has been prepared in the framework of the Platform for Collaboration on Tax by the OECD, under the responsibility of the Secretariats and Staff of the four mandated organisations. The draft reflects a broad consensus among these staff, but should not be regarded as the officially endorsed views of those organisations or of their member countries. 1 Table of Contents Introduction................................................................................................................................................................ 6 Domestic Resource Mobilisation from Mining......................................................................................... 6 Report Structure ................................................................................................................................................... 9 Building An Understanding of the Mining Sector – A Methodology ................................................ 10 Introduction ........................................................................................................................................................ 10 Steps in the Methodology ...........................................................................................................................
    [Show full text]
  • Isamill™ Technology Used in Efficient Grinding Circuits
    1 IsaMill™ Technology Used in Efficient Grinding Circuits B.D. Burford1 and L.W. Clark2 High intensity stirred milling is now an industry accepted method to efficiently grind fine and coarse particles. In particular, the IsaMill™, which was invented for, and transformed the fine grinding industry, is now being included in many new comminution circuits in coarser applications. While comminution has always been regarded as important from a processing perspective, the pressure being applied by environmental concerns on all large scale power users, now make highly energy efficient processes more important than ever. The advantages that were developed in fine grinding in the early IsaMill™ installations have been carried over into coarse grinding applications. These advantages include a simple grinding circuit that operates in open circuit with a small footprint, the ability to offer sharp product size classification, as well as the use of inert media in a high energy intensive environment. This paper will examine the use of IsaMill™ technology in fine grinding (P80 below 15 micron), and examine the use of the technology in conventional grinding applications (P80 20 - 150 µm). Recent installations will be examined, including fine and coarse grinding applications, as well as the recent test work that was undertaken using an IsaMill™ in a primary grinding circuit, and the resulting circuit proposal for this site. While comminution has been relatively unchanged for the last century, the need to install energy efficient technology will promote further growth in IsaMill™ installations, and result in one of the biggest challenges to traditional comminution design. 1. Senior Process Engineer, Xstrata Technology, L4, 307 Queen Street, Brisbane 4000, Qld, Australia 2.
    [Show full text]
  • The Effect of Regrinding Chemistry and Particle Breakage Mechanisms on Subsequent Cleaner Flotation Xumeng Chen Beng and Meng in Materials Engineering
    The Effect of Regrinding Chemistry and Particle Breakage Mechanisms on Subsequent Cleaner Flotation Xumeng Chen BEng and MEng in Materials Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in November 2014 Sustainable Minerals Institute Julius Kruttschnitt Mineral Research Centre Abstract Regrinding rougher flotation concentrates is typically used to liberate valuable minerals from gangue prior to the cleaner separation stage in processing of low grade ores. Compared to the rougher flotation after primary grinding, it is usually more challenging to achieve a satisfactory performance in post-regrind cleaner flotation especially when fine particles are generated. One main factor which results in this reduction in flotation is the unsuitable particle surfaces produced after regrinding. However, this factor is not usually considered when designing and optimizing the regrinding process. Extensive studies have demonstrated that grinding chemistry can influence mineral floatability. However, earlier studies focused on primary grinding and rougher flotation rather than regrinding and cleaner flotation. In addition, different types of regrind mills are used in industry, and these provide different particle breakage mechanisms which may also influence mineral floatability. Therefore, the overall objective of this thesis study is to investigate the effects of regrinding chemistry and particle breakage mechanisms on the cleaner flotation. The implementation of regrinding in the copper and pyrite flotation circuits at Telfer gold mine was taken as a case study and four research areas were addressed with the objective of developing fundamental understanding to provide practical guidance for the plant operation. The four areas investigated are: 1. Effect of regrinding chemistry on copper activation of pyrite and its flotation; 2.
    [Show full text]
  • Telfer Processing Plant Upgrade – the Implementation of Additional
    Telfer Processing Plant Upgrade – The Implementation of Additional Cleaning Capacity and the Regrinding of Copper and Pyrite Concentrates D R Seaman1, F Burns2, B Adamson3, B A Seaman4 and P Manton5 ABSTRACT The Telfer concentrator, located in the Great Sandy Desert of Western Australia, consists of a dual train gold/copper operation processing ore from one underground and, currently, two open pit mines with differing mineralogy. The fl otation circuit of each train was designed to operate in several modes depending on the feed mineralogy. The majority of ore mined at Telfer is processed in a sequential mode where copper minerals are fi rst fl oated into a saleable copper concentrate followed by the fl otation of an auriferous pyrite concentrate which is treated in an on-site hydrometallurgical plant (carbon-in-leach (CIL)). Gold is recovered as a gravity product within the primary grinding circuit, to the copper concentrate, and to a lesser extent, the CIL circuit. Since Telfer was re-opened, with a new concentrator, in 2004, the processing plant has struggled with poor copper concentrate grades, partially due to the excessive entrainment of non-sulfi de gangue minerals in the copper fl otation circuit and, more recently, due to composite copper particles produced when processing ore from a supplementary satellite pit that has not previously been processed through the new Telfer concentrator. Gold recoveries in the CIL circuit have also been below industry standard. This paper presents the implementation of recent changes made to the circuit to address these performance issues. The reconfi guration of the circuit has involved the installation of the following major equipment items: two ISAMills™ in ultra-fi ne grinding applications (one in the copper circuit and one in the pyrite circuit), two Jameson Cells to improve fi ne gangue rejection and a bank of 5 × Outotec TC30s to recovery copper and gold from the reground pyrite stream.
    [Show full text]
  • Biooxidation of a Gold Bearing Arsenopyrite/Pyrite Cencentrate
    .... r BIOOXIDATION OF A GOLD BEARING ARSENOPYRITE/PYRITE CONCENTRATE by D.M. MILLER B. Sc. Eng (UNIVERSITY OF THE WI1WATERSRAND).1984 University of Cape Town Submitted to the University of Cape Town in fulfilment of the requirements for the degree of Masters of Science in Engineering February 1990 The University of Cape Town has been given the right to reproduce this ti.esi3 in whole or In part. Copyright is he!(! Ly the author. The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town i ABSTRACT Biooxidation of gold bearing refractory sulphide concentrates is emerging as a viable alternative to roasting and pressure oxidation as the procedure where by gold liberation is achieved. Agitated, aerated bioreactors are required for rapid oxidation; hence the need for the development of a kinetic model where by results obtained by batch and small scale testwork are interpreted and the performance of biooxidation reactors can be predicted and which facilitates reactor design and scale-up Many models have been proposed to describe biooxidation, predicting either bacterial growth in the system, or the rate of sulphide mineral oxidation. Of these, only one, incorporating the empirical logistic equation to describe the rate of sulphide oxidation, (Pinches et al., 1987), was found to include rate parameters useful for design and scale-up purposes.
    [Show full text]