Exercises and Problems in Calculus

Total Page:16

File Type:pdf, Size:1020Kb

Exercises and Problems in Calculus Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman E-mail address: [email protected] Contents Preface ix Part 1. PRELIMINARY MATERIAL 1 Chapter 1. INEQUALITIES AND ABSOLUTE VALUES3 1.1. Background 3 1.2. Exercises 4 1.3. Problems 5 1.4. Answers to Odd-Numbered Exercises6 Chapter 2. LINES IN THE PLANE7 2.1. Background 7 2.2. Exercises 8 2.3. Problems 9 2.4. Answers to Odd-Numbered Exercises 10 Chapter 3. FUNCTIONS 11 3.1. Background 11 3.2. Exercises 12 3.3. Problems 15 3.4. Answers to Odd-Numbered Exercises 17 Part 2. LIMITS AND CONTINUITY 19 Chapter 4. LIMITS 21 4.1. Background 21 4.2. Exercises 22 4.3. Problems 24 4.4. Answers to Odd-Numbered Exercises 25 Chapter 5. CONTINUITY 27 5.1. Background 27 5.2. Exercises 28 5.3. Problems 29 5.4. Answers to Odd-Numbered Exercises 30 Part 3. DIFFERENTIATION OF FUNCTIONS OF A SINGLE VARIABLE 31 Chapter 6. DEFINITION OF THE DERIVATIVE 33 6.1. Background 33 6.2. Exercises 34 6.3. Problems 36 6.4. Answers to Odd-Numbered Exercises 37 Chapter 7. TECHNIQUES OF DIFFERENTIATION 39 iii iv CONTENTS 7.1. Background 39 7.2. Exercises 40 7.3. Problems 45 7.4. Answers to Odd-Numbered Exercises 47 Chapter 8. THE MEAN VALUE THEOREM 49 8.1. Background 49 8.2. Exercises 50 8.3. Problems 51 8.4. Answers to Odd-Numbered Exercises 52 Chapter 9. L'HOPITAL'S^ RULE 53 9.1. Background 53 9.2. Exercises 54 9.3. Problems 56 9.4. Answers to Odd-Numbered Exercises 57 Chapter 10. MONOTONICITY AND CONCAVITY 59 10.1. Background 59 10.2. Exercises 60 10.3. Problems 65 10.4. Answers to Odd-Numbered Exercises 66 Chapter 11. INVERSE FUNCTIONS 69 11.1. Background 69 11.2. Exercises 70 11.3. Problems 72 11.4. Answers to Odd-Numbered Exercises 74 Chapter 12. APPLICATIONS OF THE DERIVATIVE 75 12.1. Background 75 12.2. Exercises 76 12.3. Problems 82 12.4. Answers to Odd-Numbered Exercises 84 Part 4. INTEGRATION OF FUNCTIONS OF A SINGLE VARIABLE 87 Chapter 13. THE RIEMANN INTEGRAL 89 13.1. Background 89 13.2. Exercises 90 13.3. Problems 93 13.4. Answers to Odd-Numbered Exercises 95 Chapter 14. THE FUNDAMENTAL THEOREM OF CALCULUS 97 14.1. Background 97 14.2. Exercises 98 14.3. Problems 102 14.4. Answers to Odd-Numbered Exercises 105 Chapter 15. TECHNIQUES OF INTEGRATION 107 15.1. Background 107 15.2. Exercises 108 15.3. Problems 115 15.4. Answers to Odd-Numbered Exercises 118 CONTENTS v Chapter 16. APPLICATIONS OF THE INTEGRAL 121 16.1. Background 121 16.2. Exercises 122 16.3. Problems 127 16.4. Answers to Odd-Numbered Exercises 130 Part 5. SEQUENCES AND SERIES 131 Chapter 17. APPROXIMATION BY POLYNOMIALS 133 17.1. Background 133 17.2. Exercises 134 17.3. Problems 136 17.4. Answers to Odd-Numbered Exercises 137 Chapter 18. SEQUENCES OF REAL NUMBERS 139 18.1. Background 139 18.2. Exercises 140 18.3. Problems 143 18.4. Answers to Odd-Numbered Exercises 144 Chapter 19. INFINITE SERIES 145 19.1. Background 145 19.2. Exercises 146 19.3. Problems 148 19.4. Answers to Odd-Numbered Exercises 149 Chapter 20. CONVERGENCE TESTS FOR SERIES 151 20.1. Background 151 20.2. Exercises 152 20.3. Problems 155 20.4. Answers to Odd-Numbered Exercises 156 Chapter 21. POWER SERIES 157 21.1. Background 157 21.2. Exercises 158 21.3. Problems 164 21.4. Answers to Odd-Numbered Exercises 166 Part 6. SCALAR FIELDS AND VECTOR FIELDS 169 n Chapter 22. VECTOR AND METRIC PROPERTIES of R 171 22.1. Background 171 22.2. Exercises 174 22.3. Problems 177 22.4. Answers to Odd-Numbered Exercises 179 Chapter 23. LIMITS OF SCALAR FIELDS 181 23.1. Background 181 23.2. Exercises 182 23.3. Problems 184 23.4. Answers to Odd-Numbered Exercises 185 Part 7. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES 187 vi CONTENTS Chapter 24. PARTIAL DERIVATIVES 189 24.1. Background 189 24.2. Exercises 190 24.3. Problems 192 24.4. Answers to Odd-Numbered Exercises 193 Chapter 25. GRADIENTS OF SCALAR FIELDS AND TANGENT PLANES 195 25.1. Background 195 25.2. Exercises 196 25.3. Problems 199 25.4. Answers to Odd-Numbered Exercises 201 Chapter 26. MATRICES AND DETERMINANTS 203 26.1. Background 203 26.2. Exercises 207 26.3. Problems 210 26.4. Answers to Odd-Numbered Exercises 213 Chapter 27. LINEAR MAPS 215 27.1. Background 215 27.2. Exercises 217 27.3. Problems 219 27.4. Answers to Odd-Numbered Exercises 221 Chapter 28. DEFINITION OF DERIVATIVE 223 28.1. Background 223 28.2. Exercises 224 28.3. Problems 226 28.4. Answers to Odd-Numbered Exercises 227 Chapter 29. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLLES 229 29.1. Background 229 29.2. Exercises 232 29.3. Problems 234 29.4. Answers to Odd-Numbered Exercises 237 Chapter 30. MORE APPLICATIONS OF THE DERIVATIVE 239 30.1. Background 239 30.2. Exercises 241 30.3. Problems 243 30.4. Answers to Odd-Numbered Exercises 244 Part 8. PARAMETRIZED CURVES 245 Chapter 31. PARAMETRIZED CURVES 247 31.1. Background 247 31.2. Exercises 248 31.3. Problems 255 31.4. Answers to Odd-Numbered Exercises 256 Chapter 32. ACCELERATION AND CURVATURE 259 32.1. Background 259 32.2. Exercises 260 32.3. Problems 263 CONTENTS vii 32.4. Answers to Odd-Numbered Exercises 265 Part 9. MULTIPLE INTEGRALS 267 Chapter 33. DOUBLE INTEGRALS 269 33.1. Background 269 33.2. Exercises 270 33.3. Problems 274 33.4. Answers to Odd-Numbered Exercises 275 Chapter 34. SURFACES 277 34.1. Background 277 34.2. Exercises 278 34.3. Problems 280 34.4. Answers to Odd-Numbered Exercises 281 Chapter 35. SURFACE AREA 283 35.1. Background 283 35.2. Exercises 284 35.3. Problems 286 35.4. Answers to Odd-Numbered Exercises 287 Chapter 36. TRIPLE INTEGRALS 289 36.1. Background 289 36.2. Exercises 290 36.3. Answers to Odd-Numbered Exercises 293 Chapter 37. CHANGE OF VARIABLES IN AN INTEGRAL 295 37.1. Background 295 37.2. Exercises 296 37.3. Problems 298 37.4. Answers to Odd-Numbered Exercises 299 Chapter 38. VECTOR FIELDS 301 38.1. Background 301 38.2. Exercises 302 38.3. Answers to Odd-Numbered Exercises 304 Part 10. THE CALCULUS OF DIFFERENTIAL FORMS 305 Chapter 39. DIFFERENTIAL FORMS 307 39.1. Background 307 39.2. Exercises 309 39.3. Problems 310 39.4. Answers to Odd-Numbered Exercises 311 Chapter 40. THE EXTERIOR DIFFERENTIAL OPERATOR 313 40.1. Background 313 40.2. Exercises 315 40.3. Problems 316 40.4. Answers to Odd-Numbered Exercises 317 Chapter 41. THE HODGE STAR OPERATOR 319 41.1. Background 319 41.2. Exercises 320 viii CONTENTS 41.3. Problems 321 41.4. Answers to Odd-Numbered Exercises 322 Chapter 42. CLOSED AND EXACT DIFFERENTIAL FORMS 323 42.1. Background 323 42.2. Exercises 324 42.3. Problems 325 42.4. Answers to Odd-Numbered Exercises 326 Part 11. THE FUNDAMENTAL THEOREM OF CALCULUS 327 Chapter 43. MANIFOLDS AND ORIENTATION 329 43.1. Background|The Language of Manifolds 329 Oriented points 330 Oriented curves 330 Oriented surfaces 330 Oriented solids 331 43.2. Exercises 332 43.3. Problems 334 43.4. Answers to Odd-Numbered Exercises 335 Chapter 44. LINE INTEGRALS 337 44.1. Background 337 44.2. Exercises 338 44.3. Problems 342 44.4. Answers to Odd-Numbered Exercises 343 Chapter 45. SURFACE INTEGRALS 345 45.1. Background 345 45.2. Exercises 346 45.3. Problems 348 45.4. Answers to Odd-Numbered Exercises 349 Chapter 46. STOKES' THEOREM 351 46.1. Background 351 46.2. Exercises 352 46.3. Problems 356 46.4. Answers to Odd-Numbered Exercises 358 Bibliography 359 Index 361 Preface This is a set of exercises and problems for a (more or less) standard beginning calculus sequence. While a fair number of the exercises involve only routine computations, many of the exercises and most of the problems are meant to illuminate points that in my experience students have found confusing. Virtually all of the exercises have fill-in-the-blank type answers. Often an exercise will end p π with something like, \ . so the answer is a 3 + where a = and b = ." One b advantage of this type of answer is that it makes it possible to provide students with feedback on a substantial number of homework exercises without a huge investment of time. More importantly, it gives students a way of checking their work without giving them the answers. When a student p π works through the exercise and comes up with an answer that doesn't look anything like a 3 + , b he/she has been given an obvious invitation to check his/her work. The major drawback of this type of answer is that it does nothing to promote good communi- cation skills, a matter which in my opinion is of great importance even in beginning courses. That is what the problems are for. They require logically thought through, clearly organized, and clearly written up reports. In my own classes I usually assign problems for group work outside of class. This serves the dual purposes of reducing the burden of grading and getting students involved in the material through discussion and collaborative work. This collection is divided into parts and chapters roughly by topic.
Recommended publications
  • Abel's Identity, 131 Abel's Test, 131–132 Abel's Theorem, 463–464 Absolute Convergence, 113–114 Implication of Condi
    INDEX Abel’s identity, 131 Bolzano-Weierstrass theorem, 66–68 Abel’s test, 131–132 for sequences, 99–100 Abel’s theorem, 463–464 boundary points, 50–52 absolute convergence, 113–114 bounded functions, 142 implication of conditional bounded sets, 42–43 convergence, 114 absolute value, 7 Cantor function, 229–230 reverse triangle inequality, 9 Cantor set, 80–81, 133–134, 383 triangle inequality, 9 Casorati-Weierstrass theorem, 498–499 algebraic properties of Rk, 11–13 Cauchy completeness, 106–107 algebraic properties of continuity, 184 Cauchy condensation test, 117–119 algebraic properties of limits, 91–92 Cauchy integral theorem algebraic properties of series, 110–111 triangle lemma, see triangle lemma algebraic properties of the derivative, Cauchy principal value, 365–366 244 Cauchy sequences, 104–105 alternating series, 115 convergence of, 105–106 alternating series test, 115–116 Cauchy’s inequalities, 437 analytic functions, 481–482 Cauchy’s integral formula, 428–433 complex analytic functions, 483 converse of, 436–437 counterexamples, 482–483 extension to higher derivatives, 437 identity principle, 486 for simple closed contours, 432–433 zeros of, see zeros of complex analytic on circles, 429–430 functions on open connected sets, 430–432 antiderivatives, 361 on star-shaped sets, 429 for f :[a, b] Rp, 370 → Cauchy’s integral theorem, 420–422 of complex functions, 408 consequence, see deformation of on star-shaped sets, 411–413 contours path-independence, 408–409, 415 Cauchy-Riemann equations Archimedean property, 5–6 motivation, 297–300
    [Show full text]
  • Sequences and Series Pg. 1
    Sequences and Series Exercise Find the first four terms of the sequence 3 1, 1, 2, 3, . [Answer: 2, 5, 8, 11] Example Let be the sequence defined by 2, 1, and 21 13 2 for 0,1,2,, find and . Solution: (k = 0) 21 13 2 2 2 3 (k = 1) 32 24 2 6 2 8 ⁄ Exercise Without using a calculator, find the first 4 terms of the recursively defined sequence • 5, 2 3 [Answer: 5, 7, 11, 19] • 4, 1 [Answer: 4, , , ] • 2, 3, [Answer: 2, 3, 5, 8] Example Evaluate ∑ 0.5 and round your answer to 5 decimal places. ! Solution: ∑ 0.5 ! 0.5 0.5 0.5 ! ! ! 0.5 0.5 ! ! 0.5 0.5 0.5 0.5 0.5 0.5 0.041666 0.003125 0.000186 0.000009 . Exercise Find and evaluate each of the following sums • ∑ [Answer: 225] • ∑ 1 5 [Answer: 521] pg. 1 Sequences and Series Arithmetic Sequences an = an‐1 + d, also an = a1 + (n – 1)d n S = ()a +a n 2 1 n Exercise • For the arithmetic sequence 4, 7, 10, 13, (a) find the 2011th term; [Answer: 6,034] (b) which term is 295? [Answer: 98th term] (c) find the sum of the first 750 terms. [Answer: 845,625] rd th • The 3 term of an arithmetic sequence is 8 and the 16 term is 47. Find and d and construct the sequence. [Answer: 2,3;the sequence is 2,5,8,11,] • Find the sum of the first 800 natural numbers. [Answer: 320,400] • Find the sum ∑ 4 5.
    [Show full text]
  • Lesson 2: the Multiplication of Polynomials
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 2 M1 ALGEBRA II Lesson 2: The Multiplication of Polynomials Student Outcomes . Students develop the distributive property for application to polynomial multiplication. Students connect multiplication of polynomials with multiplication of multi-digit integers. Lesson Notes This lesson begins to address standards A-SSE.A.2 and A-APR.C.4 directly and provides opportunities for students to practice MP.7 and MP.8. The work is scaffolded to allow students to discern patterns in repeated calculations, leading to some general polynomial identities that are explored further in the remaining lessons of this module. As in the last lesson, if students struggle with this lesson, they may need to review concepts covered in previous grades, such as: The connection between area properties and the distributive property: Grade 7, Module 6, Lesson 21. Introduction to the table method of multiplying polynomials: Algebra I, Module 1, Lesson 9. Multiplying polynomials (in the context of quadratics): Algebra I, Module 4, Lessons 1 and 2. Since division is the inverse operation of multiplication, it is important to make sure that your students understand how to multiply polynomials before moving on to division of polynomials in Lesson 3 of this module. In Lesson 3, division is explored using the reverse tabular method, so it is important for students to work through the table diagrams in this lesson to prepare them for the upcoming work. There continues to be a sharp distinction in this curriculum between justification and proof, such as justifying the identity (푎 + 푏)2 = 푎2 + 2푎푏 + 푏 using area properties and proving the identity using the distributive property.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Notes on Calculus II Integral Calculus Miguel A. Lerma
    Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus.
    [Show full text]
  • Math 142 – Quiz 6 – Solutions 1. (A) by Direct Calculation, Lim 1+3N 2
    Math 142 – Quiz 6 – Solutions 1. (a) By direct calculation, 1 + 3n 1 + 3 0 + 3 3 lim = lim n = = − . n→∞ n→∞ 2 2 − 5n n − 5 0 − 5 5 3 So it is convergent with limit − 5 . (b) By using f(x), where an = f(n), x2 2x 2 lim = lim = lim = 0. x→∞ ex x→∞ ex x→∞ ex (Obtained using L’Hˆopital’s Rule twice). Thus the sequence is convergent with limit 0. (c) By comparison, n − 1 n + cos(n) n − 1 ≤ ≤ 1 and lim = 1 n + 1 n + 1 n→∞ n + 1 n n+cos(n) o so by the Squeeze Theorem, the sequence n+1 converges to 1. 2. (a) By the Ratio Test (or as a geometric series), 32n+2 32n 3232n 7n 9 L = lim (16 )/(16 ) = lim = . n→∞ 7n+1 7n n→∞ 32n 7 7n 7 The ratio is bigger than 1, so the series is divergent. Can also show using the Divergence Test since limn→∞ an = ∞. (b) By the integral test Z ∞ Z t 1 1 t dx = lim dx = lim ln(ln x)|2 = lim ln(ln t) − ln(ln 2) = ∞. 2 x ln x t→∞ 2 x ln x t→∞ t→∞ So the integral diverges and thus by the Integral Test, the series also diverges. (c) By comparison, (n3 − 3n + 1)/(n5 + 2n3) n5 − 3n3 + n2 1 − 3n−2 + n−3 lim = lim = lim = 1. n→∞ 1/n2 n→∞ n5 + 2n3 n→∞ 1 + 2n−2 Since P 1/n2 converges (p-series, p = 2 > 1), by the Limit Comparison Test, the series converges.
    [Show full text]
  • An Introduction to Mathematical Modelling
    An Introduction to Mathematical Modelling Glenn Marion, Bioinformatics and Statistics Scotland Given 2008 by Daniel Lawson and Glenn Marion 2008 Contents 1 Introduction 1 1.1 Whatismathematicalmodelling?. .......... 1 1.2 Whatobjectivescanmodellingachieve? . ............ 1 1.3 Classificationsofmodels . ......... 1 1.4 Stagesofmodelling............................... ....... 2 2 Building models 4 2.1 Gettingstarted .................................. ...... 4 2.2 Systemsanalysis ................................. ...... 4 2.2.1 Makingassumptions ............................. .... 4 2.2.2 Flowdiagrams .................................. 6 2.3 Choosingmathematicalequations. ........... 7 2.3.1 Equationsfromtheliterature . ........ 7 2.3.2 Analogiesfromphysics. ...... 8 2.3.3 Dataexploration ............................... .... 8 2.4 Solvingequations................................ ....... 9 2.4.1 Analytically.................................. .... 9 2.4.2 Numerically................................... 10 3 Studying models 12 3.1 Dimensionlessform............................... ....... 12 3.2 Asymptoticbehaviour ............................. ....... 12 3.3 Sensitivityanalysis . ......... 14 3.4 Modellingmodeloutput . ....... 16 4 Testing models 18 4.1 Testingtheassumptions . ........ 18 4.2 Modelstructure.................................. ...... 18 i 4.3 Predictionofpreviouslyunuseddata . ............ 18 4.3.1 Reasonsforpredictionerrors . ........ 20 4.4 Estimatingmodelparameters . ......... 20 4.5 Comparingtwomodelsforthesamesystem . .........
    [Show full text]
  • Example 10.8 Testing the Steady-State Approximation. ⊕ a B C C a B C P + → → + → D Dt K K K K K K [ ]
    Example 10.8 Testing the steady-state approximation. Å The steady-state approximation contains an apparent contradiction: we set the time derivative of the concentration of some species (a reaction intermediate) equal to zero — implying that it is a constant — and then derive a formula showing how it changes with time. Actually, there is no contradiction since all that is required it that the rate of change of the "steady" species be small compared to the rate of reaction (as measured by the rate of disappearance of the reactant or appearance of the product). But exactly when (in a practical sense) is this approximation appropriate? It is often applied as a matter of convenience and justified ex post facto — that is, if the resulting rate law fits the data then the approximation is considered justified. But as this example demonstrates, such reasoning is dangerous and possible erroneous. We examine the mechanism A + B ¾¾1® C C ¾¾2® A + B (10.12) 3 C® P (Note that the second reaction is the reverse of the first, so we have a reversible second-order reaction followed by an irreversible first-order reaction.) The rate constants are k1 for the forward reaction of the first step, k2 for the reverse of the first step, and k3 for the second step. This mechanism is readily solved for with the steady-state approximation to give d[A] k1k3 = - ke[A][B] with ke = (10.13) dt k2 + k3 (TEXT Eq. (10.38)). With initial concentrations of A and B equal, hence [A] = [B] for all times, this equation integrates to 1 1 = + ket (10.14) [A] A0 where A0 is the initial concentration (equal to 1 in work to follow).
    [Show full text]
  • 11.3-11.4 Integral and Comparison Tests
    11.3-11.4 Integral and Comparison Tests The Integral Test: Suppose a function f(x) is continuous, positive, and decreasing on [1; 1). Let an 1 P R 1 be defined by an = f(n). Then, the series an and the improper integral 1 f(x) dx either BOTH n=1 CONVERGE OR BOTH DIVERGE. Notes: • For the integral test, when we say that f must be decreasing, it is actually enough that f is EVENTUALLY ALWAYS DECREASING. In other words, as long as f is always decreasing after a certain point, the \decreasing" requirement is satisfied. • If the improper integral converges to a value A, this does NOT mean the sum of the series is A. Why? The integral of a function will give us all the area under a continuous curve, while the series is a sum of distinct, separate terms. • The index and interval do not always need to start with 1. Examples: Determine whether the following series converge or diverge. 1 n2 • X n2 + 9 n=1 1 2 • X n2 + 9 n=3 1 1 n • X n2 + 1 n=1 1 ln n • X n n=2 Z 1 1 p-series: We saw in Section 8.9 that the integral p dx converges if p > 1 and diverges if p ≤ 1. So, by 1 x 1 1 the Integral Test, the p-series X converges if p > 1 and diverges if p ≤ 1. np n=1 Notes: 1 1 • When p = 1, the series X is called the harmonic series. n n=1 • Any constant multiple of a convergent p-series is also convergent.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • The Mean Value Theorem Math 120 Calculus I Fall 2015
    The Mean Value Theorem Math 120 Calculus I Fall 2015 The central theorem to much of differential calculus is the Mean Value Theorem, which we'll abbreviate MVT. It is the theoretical tool used to study the first and second derivatives. There is a nice logical sequence of connections here. It starts with the Extreme Value Theorem (EVT) that we looked at earlier when we studied the concept of continuity. It says that any function that is continuous on a closed interval takes on a maximum and a minimum value. A technical lemma. We begin our study with a technical lemma that allows us to relate 0 the derivative of a function at a point to values of the function nearby. Specifically, if f (x0) is positive, then for x nearby but smaller than x0 the values f(x) will be less than f(x0), but for x nearby but larger than x0, the values of f(x) will be larger than f(x0). This says something like f is an increasing function near x0, but not quite. An analogous statement 0 holds when f (x0) is negative. Proof. The proof of this lemma involves the definition of derivative and the definition of limits, but none of the proofs for the rest of the theorems here require that depth. 0 Suppose that f (x0) = p, some positive number. That means that f(x) − f(x ) lim 0 = p: x!x0 x − x0 f(x) − f(x0) So you can make arbitrarily close to p by taking x sufficiently close to x0.
    [Show full text]
  • Antiderivatives and the Area Problem
    Chapter 7 antiderivatives and the area problem Let me begin by defining the terms in the title: 1. an antiderivative of f is another function F such that F 0 = f. 2. the area problem is: ”find the area of a shape in the plane" This chapter is concerned with understanding the area problem and then solving it through the fundamental theorem of calculus(FTC). We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with the area problem. However, antiderivatives do solve a number of interesting physical problems so we ought to consider them if only for that reason. The beginning of the chapter is devoted to understanding the type of question which an antiderivative solves as well as how to perform a number of basic indefinite integrals. Once all of this is accomplished we then turn to the area problem. To understand the area problem carefully we'll need to think some about the concepts of finite sums, se- quences and limits of sequences. These concepts are quite natural and we will see that the theory for these is easily transferred from some of our earlier work. Once the limit of a sequence and a number of its basic prop- erties are established we then define area and the definite integral. Finally, the remainder of the chapter is devoted to understanding the fundamental theorem of calculus and how it is applied to solve definite integrals. I have attempted to be rigorous in this chapter, however, you should understand that there are superior treatments of integration(Riemann-Stieltjes, Lesbeque etc..) which cover a greater variety of functions in a more logically complete fashion.
    [Show full text]