Anti Sez6 Antibodies and Methods of Use

Total Page:16

File Type:pdf, Size:1020Kb

Anti Sez6 Antibodies and Methods of Use (19) TZZ¥¥_T (11) EP 3 539 985 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 18.09.2019 Bulletin 2019/38 C07K 16/28 (2006.01) (21) Application number: 19154773.6 (22) Date of filing: 22.02.2013 (84) Designated Contracting States: • STULL, Robert, A. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Alameda, CA 94501 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • TORGOV, Michael PL PT RO RS SE SI SK SM TR San Franciso, CA 94103 (US) Designated Extension States: • SHAO, Hui BA ME Foster City, CA 94404 (US) •LIU,David (30) Priority: 24.02.2012 US 201261603203 P Pacifica, California 94044 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Wilding, James Roger 13707529.7 / 2 817 339 Mathys & Squire LLP The Shard (71) Applicant: AbbVie Stemcentrx LLC 32 London Bridge Street North Chicago, IL 60064-6400 (US) London SE1 9SG (GB) (72) Inventors: Remarks: • SAUNDERS, Laura •This application was filed on 31-01-2019 as a San Francisco, CA 94107 (US) divisional application to the application mentioned • DYLLA, Scott, J. under INID code 62. Mountain View, CA 94043 (US) •Claims filed after the date of receipt of the divisional • FOORD, Orit application (Rule 68(4) EPC). Foster City, CA 94404 (US) (54) ANTI SEZ6 ANTIBODIES AND METHODS OF USE (57) Novel modulators, including antibodies and derivatives thereof, and methods of using such modulators to treat proliferative disorders are provided. EP 3 539 985 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 539 985 A1 Description CROSS REFERENCED APPLICATIONS 5 [0001] This application claims priority from U. S. Provisional Patent Application Ser. No. 61/603,203 filed on February 24, 2012 which is incorporated herein by reference in its entirety. SEQUENCE LISTING 10 [0002] The instant application contains a sequence listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on February 19, 2013, is named 11200.0014-00304 and is 450,013 bytes in size. FIELD OF THE INVENTION 15 [0003] This application generally relates to novel compounds, compositions and methods of their use in diagnosing, preventing, treating or ameliorating proliferative disorders and any expansion, recurrence, relapse or metastasis thereof. In a broad aspect, the present invention relates to the use of seizure related 6 homolog (SEZ6) modulators, including anti-SEZ6 antibodies and fusion constructs, for the treatment, diagnosis or prophylaxis of neoplastic disorders. Selected 20 embodiments of the present invention provide for the use of such SEZ6 modulators, including antibody drug conjugates, for the immunotherapeutic treatment of malignancies preferably comprising a reduction in tumor initiating cell frequency. BACKGROUND OF THE INVENTION 25 [0004] Stem and progenitor cell differentiation and cell proliferation are normal ongoing processes that act in concert to support tissue growth during organogenesis and cell replacement and repair of most tissues during the lifetime of all living organisms. In the normal course of events cellular differentiation and proliferation is controlled by numerous factors and signals that are generally balanced to maintain cell fate decisions and tissue architecture. Thus, to a large extent it is this controlled microenvironment that regulates cell division and tissue maturation where signals are properly generated 30 based on the needs of the organism. In this regard cell proliferation and differentiation normally occur only as necessary for the replacement of damaged or dying cells or for growth. Unfortunately, disruption of cell proliferation and/or differ- entiation can result from a myriad of factors including, for example, the under- or overabundance of various signaling chemicals, the presence of altered microenvironments, genetic mutations or some combination thereof. When normal cellular proliferation and/or differentiation is disturbed or somehow disrupted it can lead to various diseases or disorders 35 including proliferative disorders such as cancer. [0005] Conventional treatments for cancer include chemotherapy, radiotherapy, surgery, immunotherapy (e.g., bio- logical response modifiers, vaccines or targeted therapeutics) or combinations thereof. Unfortunately, certain cancers are non-responsive or minimally responsive to such treatments. For example, in some patients tumors exhibit gene mutations that render them non-responsive despite the general effectiveness of selected therapies. Moreover, depending 40 on the type of cancer and what form it takes some available treatments, such as surgery, may not be viable alternatives. Limitations inherent in current standard of care therapeutics are particularly evident when attempting to treat patients who have undergone previous treatments and have subsequently relapsed. In such cases the failed therapeutic regimens and resulting patient deterioration may contribute to refractory tumors which often manifest themselves as a relatively aggressive disease that ultimately proves to be incurable. Although there have been great improvements in the diagnosis 45 and treatment of cancer over the years, overall survival rates for many solid tumors have remained largely unchanged due to the failure of existing therapies to prevent relapse, tumor recurrence and metastases. Thus, it remains a challenge to develop more targeted and potent therapies for proliferative disorders. SUMMARY OF THE INVENTION 50 [0006] These and other objectives are provided for by the present invention which, in a broad sense, is directed to methods, compounds, compositions and articles of manufacture that may be used in the treatment of SEZ6 associated disorders (e.g., proliferative disorders or neoplastic disorders). To that end, the present invention provides novel seizure related 6 homolog (or SEZ6) modulators that effectively target tumor cells and/or cancer stem cells and may be used 55 to treat patients suffering from a wide variety of malignancies. As will be discussed in more detail herein, there are at least two naturally occurring SEZ6 isoforms or variants and the disclosed modulators may comprise or associate selec- tively with one isoform or the other or with both. Moreover, in certain embodiments the disclosed SEZ6 modulators may further react with one or more SEZ family members (e.g., SEZ6L or SEZ6L2) or, in other embodiments, may be generated 2 EP 3 539 985 A1 and selected for so as to exclusively associate or react with SEZ6 isoform(s). In any event the modulators may comprise any compound that recognizes, competes, agonizes, antagonizes, interacts, binds or associates with a SEZ6 polypeptide or gene (or fragment thereof) and modulates, adjusts, alters, changes or modifies the impact of the SEZ6 protein on one or more physiological pathways. Thus, in a broad sense the present invention is generally directed to isolated SEZ6 5 modulators and use thereof. In preferred embodiments the invention is more particularly directed to isolated SEZ6 modulators comprising antibodies (i.e., antibodies that immunopreferentially bind, react with or associate with at least one isoform of SEZ6) that, in particularly preferred embodiments, are associated or conjugated to one or more cytotoxic agents.Moreover, as discussed extensivelybelow, such modulators may be used toprovide pharmaceutical compositions useful for the prophylaxis, diagnosis or treatment of proliferative disorders. 10 [0007] In selected embodiments of the invention, SEZ6 modulators may comprise a SEZ6 polypeptide or fragments thereof, either in an isolated form or fused or associated with other moieties (e.g., Fc-SEZ6, PEG-SEZ6 or SEZ6 asso- ciated with a targeting moiety). In other selected embodiments SEZ6 modulators may comprise SEZ6 antagonists which, for the purposes of the instant application, shall be held to mean any construct or compound that recognizes, competes, interacts, binds or associates with SEZ6 and neutralizes, eliminates, reduces, sensitizes, reprograms, inhibits or controls 15 the growth of neoplastic cells including tumor initiating cells. In preferred embodiments the SEZ6 modulators of the instant invention comprise anti-SEZ6 antibodies, or fragments or derivatives thereof, that have unexpectedly been found to silence, neutralize, reduce, decrease, deplete, moderate, diminish, reprogram, eliminate, or otherwise inhibit the ability of tumor initiating cells to propagate, maintain, expand, proliferate or otherwise facilitate the survival, recurrence, regen- eration and/or metastasis of neoplastic cells. In particularly preferred embodiments the antibodies or immunoreactive 20 fragments may be associated with or conjugated to one or more anti-cancer agents (e.g., a cytotoxic agent). [0008] With regard to such modulators it will be appreciated that compatible antibodies may take on any one of a number of forms including, for example, polyclonal and monoclonal antibodies, chimeric, CDR grafted, humanized and human antibodies and immunoreactive fragments and/or variants of each of the foregoing. Preferred embodiments will comprise antibodies that are relatively non-immunogenic such as humanized or fully human constructs. Of course, in 25 view of the instant disclosure those skilled in the art could readily identify one or more complementarity determining regions (CDRs) associated with heavy and light chain variable regions of SEZ6 antibody modulators and use those CDRs to engineer or fabricate chimeric, humanized or CDR grafted
Recommended publications
  • Immunotherapy in Various Cancers
    © 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162) Immunotherapy in various Cancers Nirav Parmar 1st Year MSc Student Department of Biosciences and Bioengineering, IIT- Roorkee India Abstract: Immunotherapy in the metastatic situation has changed the therapeutic landscape for a variety of cancers, including colorectal cancer. Immunotherapy has firmly established itself as a new pillar of cancer treatment in a variety of cancer types, from the metastatic stage to adjuvant and neoadjuvant settings. Immune checkpoint inhibitors have risen to prominence as a treatment option based on a better knowledge of the development of the tumour microenvironment immune cell-cancer cell regulation over time. Immunotherapy has lately appeared as the most potential field of cancer research by increasing effectiveness and reducing side effects, with FDA-approved therapies for more than 10 various tumours and thousands of new clinical studies. Key Words: Immunotherapy, metastasis, immune checkpoint. Introduction: In the late 1800s, William B. Coley, now generally regarded as the founder of immunotherapy, tried to harness the ability of immune system to cure cancer for the first time. Coley began injecting live and attenuated bacteria like Streptococcus pyogenes and Serratia marcescens into over a thousand patients in 1891 in the hopes of causing sepsis and significant immunological and antitumor responses. His bacterium mixture became known as "Coley's toxin" and is the first recorded active cancer immunotherapy treatment [1]. To better understand the processes of new and traditional immunological targets, the relationship between the immune system and tumour cells should be examined. Tumours have developed ways to evade immunological responses.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • TRUNCATED EPIDERIMAL GROWTH FACTOR RECEPTOR (Egfrt)
    (19) TZZ _T (11) EP 2 496 698 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 14/71 (2006.01) C12N 9/12 (2006.01) 09.01.2019 Bulletin 2019/02 (86) International application number: (21) Application number: 10829041.2 PCT/US2010/055329 (22) Date of filing: 03.11.2010 (87) International publication number: WO 2011/056894 (12.05.2011 Gazette 2011/19) (54) TRUNCATED EPIDERIMAL GROWTH FACTOR RECEPTOR (EGFRt) FOR TRANSDUCED T CELL SELECTION VERKÜRZTER REZEPTOR FÜR DEN EPIDERMALEN WACHSTUMSFAKTOR-REZEPTOR ZUR AUSWAHL UMGEWANDELTER T-ZELLEN RÉCEPTEUR DU FACTEUR DE CROISSANCE DE L’ÉPIDERME TRONQUÉ (EGFRT) POUR LA SÉLECTION DE LYMPHOCYTES T TRANSDUITS (84) Designated Contracting States: • LI ET AL.: ’Structural basis for inhibition of the AL AT BE BG CH CY CZ DE DK EE ES FI FR GB epidermal growth factor receptor by cetuximab.’ GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO CANCER CELL vol. 7, 2005, pages 301 - 311, PL PT RO RS SE SI SK SM TR XP002508255 • CHAKRAVERTY ET AL.: ’An inflammatory (30) Priority: 03.11.2009 US 257567 P checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral (43) Date of publication of application: tissues.’ JEM vol. 203, no. 8, 2006, pages 2021 - 12.09.2012 Bulletin 2012/37 2031, XP008158914 • POWELL ET AL.: ’Large-Scale Depletion of (73) Proprietor: City of Hope CD25+ Regulatory T Cells from Patient Duarte, CA 91010 (US) Leukapheresis Samples.’ J IMMUNOTHER vol. 28, no.
    [Show full text]
  • Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy
    Journal of Clinical Medicine Review Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy Anne M. Macpherson 1, Simon C. Barry 2, Carmela Ricciardelli 1 and Martin K. Oehler 1,3,* 1 Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; [email protected] (A.M.M.); [email protected] (C.R.) 2 Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia; [email protected] 3 Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia * Correspondence: [email protected]; Tel.: +61-8-8332-6622 Received: 29 July 2020; Accepted: 3 September 2020; Published: 14 September 2020 Abstract: Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • Maintenance Therapy in Solid Tumors Marie-Anne Smit, MD, MS,1 and John L
    Review Maintenance therapy in solid tumors Marie-Anne Smit, MD, MS,1 and John L. Marshall, MD2 1 Department of Internal Medicine, 2 Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC The concept of maintenance therapy has been well studied in hematologic malignancies, and now, an increasing number of clinical trials explore the role of maintenance therapy in solid cancers. Both biological and lower-intensity chemotherapeutic agents are currently being evaluated as maintenance therapy. However, despite the increase in research in this area, there has not been consensus about the definition and timing of maintenance therapy. In this review, we will focus on continuation maintenance therapy and switch maintenance therapy in patients with metastatic solid tumors who have achieved stable disease, partial response, or complete response after first-line treatment. aintenance therapy is the subject of an apeutic agents, such as capecitabine and oral 5- increased interest in cancer research. fluorouracil (5-FU), are currently being evaluated as MIn contrast to conventional chemo- maintenance therapy. therapy that aims to kill as many cancer cells as Despite the increase in research in this area, possible, the goal of treatment with maintenance there is no consensus on the definition and timing therapy is to sustain a stable tumor mass, reduce of maintenance therapy. The term maintenance cancer-related symptoms, and prolong the time to therapy is used in a variety of treatment situations, progression and the related symptoms. A thera- such as prolonged first-line therapy and less- peutic strategy that is explicitly designed to main- intense or different therapy given after first-line tain a stable, tolerable tumor volume could in- therapy.
    [Show full text]
  • Ovarian Cancer Immunotherapy and Personalized Medicine
    International Journal of Molecular Sciences Review Ovarian Cancer Immunotherapy and Personalized Medicine Susan Morand 1, Monika Devanaboyina 1 , Hannah Staats 1, Laura Stanbery 2 and John Nemunaitis 2,* 1 Department of Medicine, University of Toledo, Toledo, OH 43614, USA; [email protected] (S.M.); [email protected] (M.D.); [email protected] (H.S.) 2 Gradalis, Inc., Carrollton, TX 75006, USA; [email protected] * Correspondence: [email protected] Abstract: Ovarian cancer response to immunotherapy is limited; however, the evaluation of sen- sitive/resistant target treatment subpopulations based on stratification by tumor biomarkers may improve the predictiveness of response to immunotherapy. These markers include tumor mutation burden, PD-L1, tumor-infiltrating lymphocytes, homologous recombination deficiency, and neoanti- gen intratumoral heterogeneity. Future directions in the treatment of ovarian cancer include the utilization of these biomarkers to select ideal candidates. This paper reviews the role of immunother- apy in ovarian cancer as well as novel therapeutics and study designs involving tumor biomarkers that increase the likelihood of success with immunotherapy in ovarian cancer. Keywords: ovarian cancer; immunotherapy; biomarker 1. Introduction Citation: Morand, S.; Devanaboyina, In the United States, 22,000 patients are diagnosed with ovarian cancer annually, M.; Staats, H.; Stanbery, L.; making it the eleventh most common cancer among female patients and the fifth leading Nemunaitis, J. Ovarian Cancer cause of cancer-related death in women [1,2]. Current front-line standard of care includes Immunotherapy and Personalized debulking surgery with platinum–taxane maintenance chemotherapy. Following front-line Medicine. Int. J. Mol. Sci. 2021, 22, therapy, cancer will recur in 60–70% of patients with optimal debulking (<1 cm residual 6532.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • Anticancer Drugs Some Basic Facts About Cancer
    Anticancer Drugs Some basic Facts about Cancer • Cancer cells have lost the normal regulatory mechanisms that control cell growth and multiplication • Cancer cell have lost their ability to differentiate (that means to specialize) • Benign cancer cell stay at the same place • Malignant cancer cells invade new tissues to set up secondary tumors, a process known as metastasis • Chemicals causing cancer are called mutagens • Cancer can be caused by chemicals, life style (smoking), and viruses • genes that are related to cause cancer are called oncogenes. Genes that become onogenic upon mutation are called proto- oncogenes. The Hallmarks of Cancer • Self-sufficiency in growth signals (e.g. via activation of the H-Ras oncogene) • Insensitivity to growth inhibitory (anti-growth) signals (lose retinoblastoma suppressor) • Evasion of programmed cell death (apoptosis) (produce IGF survival factors) • limitless replicative potential (turn on telomerase) • sustained angiogenesis (produce VEGF inducer) • tissue invasion and metastasis (inactivate E-cadherin) • inactivation of systems that regulate in response to DNA damage (e.g. p53) Anti-Cancer Strategies Gleevec Iressa Erbitux (ab) Avastin (ab) sales of kinase inhibitors Some current and prospective modalities of cancer chemotherapy Category Function Examples Antimetabolites Interfere with intermediary metabolism of proliferating cells Methotrexate, 5-fluorouracil Monoclonal antibodies Target cancer cells that express specific antigen Herceptin (Genentech), Zevalin (IDEC Pharmaceuticals/Schering-Plough)
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]