American Birds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Diversity of the Potentially Therapeutic Tapeworm Hymenolepis Diminuta (Cestoda: Cyclophyllidea) T
Parasitology International 71 (2019) 121–125 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Genetic diversity of the potentially therapeutic tapeworm Hymenolepis diminuta (Cestoda: Cyclophyllidea) T Lucie Řežábkováa,b,1, Jan Brabeca,c,1, Milan Jirkůa, Marc Dellerbad, Roman Kuchtaa, ⁎ David Modrýa,e, William Parkerf, Kateřina Jirků Pomajbíkováa,b, a Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic b Department of Medical Biology, Faculty of Science, University of South-Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic c Natural History Museum of Geneva, P.O. Box 6134, CH-1211 Geneva, Switzerland d Biome Restoration Ltd., White Cross Business Park, Lancaster, United Kingdom e Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, Brno 621 42, Czech Republic f Department of Surgery, Duke University School of Medicine, NC, USA ARTICLE INFO ABSTRACT Keywords: The cestode Hymenolepis diminuta is highly prevalent in wild rat populations and has also been observed rarely in Hymenolepis diminuta humans, generally causing no apparent harm. The organism has been studied for decades in the laboratory, and Genetic diversity its colonization of laboratory rats has recently been shown as protective against some inflammation-associated Helminth-therapy disorders. Recently, H. diminuta has become a leading candidate for helminth therapy, an emerging method of Laboratory isolates “biota enrichment” used to treat or prevent inflammatory diseases of humans in Western society. While most of the experimental isolates of H. diminuta are identified based on typical morphological features, hymenolepidid tapeworms may represent complexes of cryptic species as detected by molecular sequence data. -
Survey of Southern Amazonian Bird Helminths Kaylyn Patitucci
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Survey Of Southern Amazonian Bird Helminths Kaylyn Patitucci Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Patitucci, Kaylyn, "Survey Of Southern Amazonian Bird Helminths" (2015). Theses and Dissertations. 1945. https://commons.und.edu/theses/1945 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. SURVEY OF SOUTHERN AMAZONIAN BIRD HELMINTHS by Kaylyn Fay Patitucci Bachelor of Science, Washington State University 2013 Master of Science, University of North Dakota 2015 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 2015 This thesis, submitted by Kaylyn F. Patitucci in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. __________________________________________ Dr. Vasyl Tkach __________________________________________ Dr. Robert Newman __________________________________________ Dr. Jefferson Vaughan -
Cryptic Diversity in Hymenolepidid Tapeworms Infecting Humans
CORE Metadata, citation and similar papers at core.ac.uk Provided by Helsingin yliopiston digitaalinen arkisto Parasitology International 65 (2016) 83–86 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Short communication Cryptic diversity in hymenolepidid tapeworms infecting humans Agathe Nkouawa a,1, Voitto Haukisalmi b,1, Tiaoying Li c,1,MinoruNakaoa,⁎,1, Antti Lavikainen d, Xingwang Chen c, Heikki Henttonen e, Akira Ito a a Department of Parasitology, Asahikawa Medical University, Asahikawa, Japan b Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland c Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, China d Department of Bacteriology and Immunology/Immunobiology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland e Natural Resources Institute Finland (Luke), Vantaa, Finland article info abstract Article history: An adult hymenolepidid tapeworm was recovered from a 52-year-old Tibetan woman during a routine epidemi- Received 22 July 2015 ological survey for human taeniasis/cysticercosis in Sichuan, China. Phylogenetic analyses based on sequences of Received in revised form 25 October 2015 nuclear 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit 1 showed that the human isolate Accepted 28 October 2015 is distinct from Hymenolepis diminuta and Hymenolepis nana, the common parasites causing human Available online 29 October 2015 hymenolepiasis. Proglottids of the human isolate were unfortunately unsuitable for morphological identification. Keywords: However, the resultant phylogeny demonstrated the human isolate to be a sister species to Hymenolepis hibernia Hymenolepiasis from Apodemus mice in Eurasia. The present data clearly indicate that hymenolepidid tapeworms causing human Hymenolepis diminuta infections are not restricted to only H. -
Cestoda: Hymenolepididae) from Geomyid Rodents in Mexico and Costa Rica
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Scott Gardner Publications & Papers Parasitology, Harold W. Manter Laboratory of 4-2020 A New Genus and Two New Species of Unarmed Hymenolepidid Cestodes (Cestoda: Hymenolepididae) from Geomyid Rodents in Mexico and Costa Rica Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Altangerel Tsogtsaikhan Dursahinhan University of Nebraska - Lincoln, [email protected] Mariel Campbell University of New Mexico, [email protected] S. Elizabeth Rácz University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/slg Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Parasitology Commons Gardner, Scott Lyell; Dursahinhan, Altangerel Tsogtsaikhan; Campbell, Mariel; and Rácz, S. Elizabeth, "A New Genus and Two New Species of Unarmed Hymenolepidid Cestodes (Cestoda: Hymenolepididae) from Geomyid Rodents in Mexico and Costa Rica" (2020). Scott Gardner Publications & Papers. 16. https://digitalcommons.unl.edu/slg/16 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Scott Gardner Publications & Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Gardner, Tsogtsaikhan, Campbell, and Rácz in Zootaxa (2020) 4766(2): 358-376. Copyright 2020, Magnolia Press. Open access material. Creative Commons Unported 3.0 Attribution license. Zootaxa 4766 (2): 358–376 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4766.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:AAB9F694-5CBE-474F-9D56-4DC10FDD1E84 A new genus and two new species of unarmed hymenolepidid cestodes (Cestoda: Hymenolepididae) from geomyid rodents in Mexico and Costa Rica SCOTT L. -
Comparative Neuroanatomy Within the Context of Deep Metazoan Phylogeny
Comparative Neuroanatomy within the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Carsten Michael Heuer aus Düsseldorf Berichter: Herr Universitätsprofessor Dr. Peter Bräunig Herr Privatdozent Dr. Rudolf Loesel Tag der mündlichen Prüfung: 08.03.2010 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Summary Comparative invertebrate neuroanatomy has seen a renaissance in recent years. Highly conserved neuroarchitectural traits offer a wealth of hitherto largely unexploited characters that can make valuable contributions in inferring phylogenetic relationships in cases where phylogenetic analyses of molecular or morphological data sets yield trees with conflicting or weakly supported topologies. Conversely, in those cases where robust phylogenetic trees exist, neuroanatomical features can be mapped onto the trees, helping to shed light on the evolution of the central nervous system. This thesis aims to provide detailed neuroanatomical data for a hitherto poorly studied invertebrate taxon, the segmented worms (Annelida). Drawing on the wealth of investigations into the architecture of the brain in different arthropods, the study focuses on the identification and description of possibly homologous brain centers (i.e. neuropils) in annelids. The thesis presents an extensive survey of the internal architecture of the brain of the ragworm Nereis diversicolor (Polychaeta, Annelida). Based upon confocal laser scanning microscope analyses, the distribution of neuroactive substances in the brain is described and the architecture of two major brain compartments, namely the paired mushroom bodies and the central optic neuropil, is characterized in detail. -
Morphology, Ultrastructure, Genomics, and Phylogeny of Euplotes Vanleeuwenhoeki Sp
www.nature.com/scientificreports OPEN Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra‑reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Valentina Serra1,7, Leandro Gammuto1,7, Venkatamahesh Nitla1, Michele Castelli2,3, Olivia Lanzoni1, Davide Sassera3, Claudio Bandi2, Bhagavatula Venkata Sandeep4, Franco Verni1, Letizia Modeo1,5,6* & Giulio Petroni1,5,6* Taxonomy is the science of defning and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/ bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very frst description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as “holobionts”. We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont “Candidatus Pinguicoccus supinus” gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont. Taxonomy is the science of defning and naming groups of biological organisms based on shared characteristics and, more recently, based on evolutionary relationships. Classical taxonomy was exclusively based on morpho- logical-comparative techniques requiring a very high specialization on specifc taxa. -
Helminth Parasites Among Rodents in the Middle East Countries: a Systematic Review and Meta-Analysis
animals Review Helminth Parasites among Rodents in the Middle East Countries: A Systematic Review and Meta-Analysis Md Mazharul Islam 1,2,* , Elmoubashar Farag 3,*, Mohammad Mahmudul Hassan 4, Devendra Bansal 3, Salah Al Awaidy 5, Abdinasir Abubakar 6 , Hamad Al-Romaihi 3 and Zilungile Mkhize-Kwitshana 7,8 1 Department of Animal Resources, Ministry of Municipality and Environment, Doha, P.O. Box 35081, Qatar 2 School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa 3 Ministry of Public Health, Doha, P.O. Box 42, Qatar; [email protected] (D.B.); [email protected] (H.A.-R.) 4 Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh; [email protected] 5 Ministry of Health, P.O. Box 393, PC 113 Muscat, Oman; [email protected] 6 Infectious Hazard Preparedness (IHP) Unit, WHO Health Emergencies Department (WHE), World Health Organization, Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt; [email protected] 7 School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu Natal, Durban 40000, South Africa; [email protected] 8 South African Medical Research Council, Cape Town 7505, South Africa * Correspondence: [email protected] (M.M.I.); [email protected] (E.F.); Tel.: +974-66064382 (M.M.I.); +974-55543816 or +974-44070396 (E.F.) Received: 3 October 2020; Accepted: 30 October 2020; Published: 9 December 2020 Simple Summary: The review was conducted to establish an overview of rodent helminths in the Middle East as well as their public health importance. -
Taxonomic Structure of Cestodofauna of Two Species of Diving Ducks Aythya Fuligula and A
Annals of Parasitology 2019, 65(4), 341–349 Copyright© 2019 Polish Parasitological Society doi: 10.17420/ap6504.219 Original papers Taxonomic structure of cestodofauna of two species of diving ducks Aythya fuligula and A. marila (Anseriformes: Aythyini) in north-western Poland Katarzyna Królaczyk 1, Katarzyna M. Kavetska 2 1Department of Animal Anatomy and Zoology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Judyma St. 20, 71-466 Szczecin, Poland 2Laboratory of Biology and Ecology of Parasites, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Judyma St. 20, 71-466 Szczecin, Poland Corresponding Author: Katarzyna Krolaczyk; e-mail: [email protected] ABSTRACT. Diving ducks Aythyini Delacour et Mayr, 1945 are an interesting object of the parasitological studies because due to living in two environments (aquatic and terrestrial) and migrating over long distances, they can come into contact with many potential hosts for parasites. In the recent years, a decrease in the population of diving ducks has been observed, especially of the tufted duck and the scaup. Both of them remain the most common species found in the region of West Pomerania, so the presented research is limited to the parasitological studies of these two species of ducks. The aim of this study was to determine the taxonomic structure of the cestodofauna of two species of diving ducks, the tufted duck and the scaup, wintering in north-west Poland. The research material consisted of 14,734 tapeworms collected from digestive tracts of 256 birds, 174 tufted ducks Aythya fuligula (Linnaeus, 1758) and 82 scaups A. -
Helminth Parasites of Thomomys Bulbivorus (Richardson) (Rodentia: Geomyidae), with the Description of a New Species of Hymenolepis (Cestoda)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 6-1985 Helminth Parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the Description of a New Species of Hymenolepis (Cestoda) Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Helminth Parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the Description of a New Species of Hymenolepis (Cestoda)" (1985). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 73. https://digitalcommons.unl.edu/parasitologyfacpubs/73 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in CANADIAN JOURNAL OF ZOOLOGY 63:6 (June 1985), pp.1463-1469. Copyright 1985 National Research Council of Canada. Used by permission. 1463 Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda) SCOTT LYELL GARDNER Department ofBiology, University ofNew Mexico, Albuquerque, NM, U.S.A. 87131 Received July 4, 1984 GARDNER, S. L. 1985. Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda). Can. J. Zoo!' 63: 1463-1469. A cestode, Hymenolepis tualatinensis n. sp., is described from the pocket gopher, Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), from the Willamette Valley in Oregon. -
Predicting Missing Links in Global Host-Parasite Networks
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965046; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Predicting missing links in global host-parasite networks Maxwell J. Farrell1;2;3∗, Mohamad Elmasri4, David Stephens4 & T. Jonathan Davies5;6 1Department of Biology, McGill University 2Ecology & Evolutionary Biology Department, University of Toronto 3Center for the Ecology of Infectious Diseases, University of Georgia 4Department of Mathematics & Statistics, McGill University 5Botany, Forest & Conservation Sciences, University of British Columbia 6African Centre for DNA Barcoding, University of Johannesburg ∗To whom correspondence should be addressed: e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965046; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract 1 1. Parasites that infect multiple species cause major health burdens globally, but for many, 2 the full suite of susceptible hosts is unknown. Predicting undocumented host-parasite 3 associations will help expand knowledge of parasite host specificities, promote the devel- 4 opment of theory in disease ecology and evolution, and support surveillance of multi-host 5 infectious diseases. Analysis of global species interaction networks allows for leveraging 6 of information across taxa, but link prediction at this scale is often limited by extreme 7 network sparsity, and lack of comparable trait data across species. -
Small Subunit Rdna and the Platyhelminthes: Signal, Noise, Conflict and Compromise
Chapter 25 In: Interrelationships of the Platyhelminthes (eds. D.T.J. Littlewood & R.A. Bray) ____________________________________________________________________________________________________________ 25 SMALL SUBUNIT RDNA AND THE PLATYHELMINTHES: SIGNAL, NOISE, CONFLICT AND COMPROMISE D. Timothy J. Littlewood and Peter D. Olson The strategies of gene sequencing and gene characterisation in phylogenetic studies are frequently determined by a balance between cost and benefit, where benefit is measured in terms of the amount of phylogenetic signal resolved for a given problem at a specific taxonomic level. Generally, cost is far easier to predict than benefit. Building upon existing databases is a cost-effective means by which molecular data may rapidly contribute to addressing systematic problems. As technology advances and gene sequencing becomes more affordable and accessible to many researchers, it may be surprising that certain genes and gene products remain favoured targets for systematic and phylogenetic studies. In particular, ribosomal DNA (rDNA), and the various RNA products transcribed from it continue to find utility in wide ranging groups of organisms. The small (SSU) and large subunit (LSU) rDNA fragments especially lend themselves to study as they provide an attractive mix of constant sites that enable multiple alignments between homologues, and variable sites that provide phylogenetic signal (Hillis and Dixon 1991; Dixon and Hillis 1993). Ribosomal RNA (rRNA) is also the commonest nucleic acid in any cell and thus was the prime target for sequencing in both eukaryotes and prokaryotes during the early history of SSU nucleotide based molecular systematics (Olsen and Woese 1993). In particular, the SSU gene (rDNA) and gene product (SSU rRNA1) have become such established sources of taxonomic and systematic markers among some taxa that databanks dedicated to the topic have been developed and maintained with international and governmental funding (e.g. -
Reproductive Anatomy and Gametogenesis in Shipleya Inermis (Cestoda: Dioecocestidae) R
Ann. Parasitol. Hum. Comp., Key-words: Shipleya inermis. Dioecocestidae. Cestoda, cytoge 1990, 65 : n° 5-6, 229-237. netics. Gametogenesis. Reproductive anatomy. Dioecious cestode. Mots-clés : Shipleya inermis. Dioecocestidae. Cestoda, cytogé Mémoire. nétique. Gamétogenèse. Anatomie reproductrice. Cestode dioïque. REPRODUCTIVE ANATOMY AND GAMETOGENESIS IN SHIPLEYA INERMIS (CESTODA: DIOECOCESTIDAE) R. L. RAUSCH, V. R. RAUSCH Summary ----------------------------------------------------------------------------------- Study of the reproductive anatomy in 65 strobilae of the dioe chromosomal complement in embryos and germ-line cells consisted cious cestode Shipleya inermis Fuhrmann, 1908 (Acoleata: Dioe of four pairs of homologues (2n = 8, n = 4, FN = 14). Based cocestidae) showed that a common genital duct, probably arising on observation in female cestodes of one pair of chromosomes through fusion of the vas deferens and the proximal portion of having non-homologous or non-pairing segments due to influence the vaginal duct, compensated functionally for the loss of a patent of heterochromatin, the authors suggest that females produce vagina. Gonochorism was characteristic, but rudimentary genital gametes of two types relative to heterochromatic DNA, while males organs of the opposite sex were present in 26 % of males and are homogametic, and that sex-determining effects are associated 9 % of females; two strobilae (3 %) were hermaphroditic. Her therein. In males, meiosis included chromosomal pairing and recom maphrodites had normally developed male organs and were capable bination, after which heterochromatin was eliminated from germ of cross-fertilization as males; their female organs were much line cells through fragmentation. Other biological characteristics reduced in size but were functional, and eggs or fertilized ova of S. inermis in the hosts, Limnodromus spp.