Pathology 17 A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Global Assessment of Parasite Diversity in Galaxiid Fishes
diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus. -
RUNNING HEAD: Farrow-Aspects of the Life Cycle of Apharyngostrigea Pipientis
RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Aspects of the life cycle of Apharyngostrigea pipientis in Central Florida wetlands Abigail Farrow Florida Southern College RUNNING HEAD: Farrow-Aspects of the life cycle of Apharyngostrigea pipientis Abstract Apharyngostrigea pipientis (Trematoda: Strigeidae) is known to form metacercariae around the pericardium of anuran tadpoles in Michigan and other northern locations. Definitive hosts are thought to be wading birds, while the intermediate host is a freshwater snail. Apharyngostrigea pipientis is not commonly reported from Florida, yet we have found several populations of snails (Biopholaria havaensis) and tadpoles, primarily the Cuban treefrog (Osteopilus septentrionalis), to host this trematode. We used experimental infections to elucidate the transmission dynamics and development of A. pipientis inside the tadpole host. Surprisingly, we found two types (species?) of cercariae being shed from B. havaensis that enter Cuban treefrog tadpoles to form seemingly identical metacercariae. Further, both of these develop into metaceracariae inside the tadpoles over 5-7 days after wondering inside the host's body cavity as mesocercariae, and metacercariae are commonly concentrated around the pericardium cavity. However, they differ in entry mode, with one being ingested, whereas the other penetrates the skin. This project is ongoing. 1. Introduction The study of parasitology plays a vital role in understanding the foundation of communities in different ecosystems. Parasites have the ability to exploit their hosts, directly affecting the health of the organism and the environment. By having these abilities, it could mean a change in the way the organism contributes to and balances the overall ecosystem (Poulin, 1999). -
Black-Flies and Leucocytozoon Spp. As Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada
Black-flies and Leucocytozoon spp. as Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada D. Bruce Hunter1, Christoph Rohner2, and Doug C. Currie3 ABSTRACT.—Black fly feeding and infection with the blood parasite Leucocytozoon spp. caused mortality in juvenile Great Horned Owls (Bubo virginianus) in the Yukon, Canada during 1989-1990. The mortality occurred during a year of food shortage corresponding with the crash in snowshoe hare (Lepus americanus) populations. We postulate that the occurrence of disease was mediated by reduced food availability. Rohner (1994) evaluated the numerical re- black flies identified from Alaska, USA and the sponse of Great Horned Owls (Bubo virginianus) Yukon Territory, Canada, 36 percent are orni- to the snowshoe hare (Lepus americanus) cycle thophilic, 39 percent mammalophilic and 25 from 1988 to 1993 in the Kluane Lake area of percent autogenous (Currie 1997). Numerous southwestern Yukon, Canada. The survival of female black flies were obtained from the car- juvenile owls was very high during 1989 and casses of the juvenile owls, but only 45 of these 1990, both years of abundant hare populations. were sufficiently well preserved for identifica- Survival decreased in 1991, the first year of the tion. They belonged to four taxa as follows: snowshoe hare population decline (Rohner and Helodon (Distosimulium) pleuralis (Malloch), 1; Hunter 1996). Monitoring of nest sites Helodon (Parahelodon) decemarticulatus combined with tracking of individuals by radio- (Twinn), 3; Simulium (Eusimulium) aureum Fries telemetry provided us with carcasses of 28 ju- complex, 3; and Simulium (Eusimulium) venile owls found dead during 1990 and 1991 canonicolum (Dyar and Shannon) complex, 38 (Rohner and Doyle 1992). -
Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: a Review
University of Kentucky UKnowledge Veterinary Science Faculty Publications Veterinary Science 9-2017 Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Wesley C. Van Voorhis University of Washington J. Stone Doggett Portland VA Medical Center Marilyn Parsons University of Washington Matthew A. Hulverson University of Washington Ryan Choi University of Washington Follow this and additional works at: https://uknowledge.uky.edu/gluck_facpub See next page for additional authors Part of the Animal Sciences Commons, Immunology of Infectious Disease Commons, and the Parasitology Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Van Voorhis, Wesley C.; Doggett, J. Stone; Parsons, Marilyn; Hulverson, Matthew A.; Choi, Ryan; Arnold, Samuel L. M.; Riggs, Michael W.; Hemphill, Andrew; Howe, Daniel K.; Mealey, Robert H.; Lau, Audrey O. T.; Merritt, Ethan A.; Maly, Dustin J.; Fan, Erkang; and Ojo, Kayode K., "Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review" (2017). Veterinary Science Faculty Publications. 45. https://uknowledge.uky.edu/gluck_facpub/45 This Article is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Veterinary Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Wesley C. Van Voorhis, J. Stone Doggett, Marilyn Parsons, Matthew A. Hulverson, Ryan Choi, Samuel L. M. Arnold, Michael W. Riggs, Andrew Hemphill, Daniel K. Howe, Robert H. Mealey, Audrey O. T. Lau, Ethan A. Merritt, Dustin J. Maly, Erkang Fan, and Kayode K. Ojo Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Notes/Citation Information Published in Experimental Parasitology, v. -
A New Species of Sarcocystis in the Brain of Two Exotic Birds1
© Masson, Paris, 1979 Annales de Parasitologie (Paris) 1979, t. 54, n° 4, pp. 393-400 A new species of Sarcocystis in the brain of two exotic birds by P. C. C. GARNHAM, A. J. DUGGAN and R. E. SINDEN * Imperial College Field Station, Ashurst Lodge, Ascot, Berkshire and Wellcome Museum of Medical Science, 183 Euston Road, London N.W.1., England. Summary. Sarcocystis kirmsei sp. nov. is described from the brain of two tropical birds, from Thailand and Panama. Its distinction from Frenkelia is considered in some detail. Résumé. Une espèce nouvelle de Sarcocystis dans le cerveau de deux Oiseaux exotiques. Sarcocystis kirmsei est décrit du cerveau de deux Oiseaux tropicaux de Thaïlande et de Panama. Les critères de distinction entre cette espèce et le genre Frenkelia sont discutés en détail. In 1968, Kirmse (pers. comm.) found a curious parasite in sections of the brain of an unidentified bird which he had been given in Panama. He sent unstained sections to one of us (PCCG) and on examination the parasite was thought to belong to the Toxoplasmatea, either to a species of Sarcocystis or of Frenkelia. A brief description of the infection was made by Tadros (1970) in her thesis for the Ph. D. (London). The slenderness of the cystozoites resembled those of Frenkelia, but the prominent spines on the cyst wall were more like those of Sarcocystis. The distri bution of the cystozoites within the cyst is characteristic in that the central portion is practically empty while the outer part consists of numerous pockets of organisms, closely packed together. -
Some Remarks on the Genus Leucocytozoon
63 SOME REMAKES ON THE GENUS LEUCOCYTOZOON. BY C. M. WENYON, B.SC, M.B., B.S. Protozoologist to the London School of Tropical Medicine. NOTE. A reply to the criticisms contained in Dr Wenyon's paper will be published by Miss Porter in the next number of " Parasitology". A GOOD deal of doubt still exists in many quarters as to the exact meaning of the term Leucocytozoon applied to certain Haematozoa. The term Leucocytozoaire was first used by Danilewsky in writing of certain parasites he had found in the blood of birds. In a later publication he uses the term Leucocytozoon for the same parasites though he does not employ it as a true generic title. In this latter sense it was first employed by Ziemann who named the parasite of an owl Leucocytozoon danilewskyi, thus establishing this parasite the type species of the new genus Leucocytozoon. It is perhaps hardly necessary to mention that Danilewsky and Ziemann both used this name because they considered the parasite in question to inhabit a leucocyte of the bird's blood. There has arisen some doubt as to the exact nature of this host-cell. Some authorities consider it to be a very much altered red blood corpuscle, some perhaps more correctly an immature red blood corpuscle, while others adhere to the original view of Danilewsky as to its leucocytic nature. It must be clearly borne in mind that the nature of the host-cell does not in any way affect the generic name Leucocytozoon. If it could be conclusively proved that the host-cell is in every case a red blood corpuscle the name Leucocytozoon would still remain as the generic title though it would have ceased to be descriptive. -
Control of Intestinal Protozoa in Dogs and Cats
Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution. -
Review of the Genus Mansonella Faust, 1929 Sensu Lato (Nematoda: Onchocercidae), with Descriptions of a New Subgenus and a New Subspecies
Zootaxa 3918 (2): 151–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3918.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:DE65407C-A09E-43E2-8734-F5F5BED82C88 Review of the genus Mansonella Faust, 1929 sensu lato (Nematoda: Onchocercidae), with descriptions of a new subgenus and a new subspecies ODILE BAIN1†, YASEN MUTAFCHIEV2, KERSTIN JUNKER3,8, RICARDO GUERRERO4, CORALIE MARTIN5, EMILIE LEFOULON5 & SHIGEHIKO UNI6,7 1Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7205 CNRS, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria E-mail: [email protected] 3ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa 4Instituto de Zoología Tropical, Faculdad de Ciencias, Universidad Central de Venezuela, PO Box 47058, 1041A, Caracas, Venezuela. E-mail: [email protected] 5Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7245 MCAM, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France E-mail: [email protected], [email protected] 6Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia E-mail: [email protected] 7Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan 8Corresponding author. E-mail: [email protected] †In memory of our colleague Dr Odile Bain, who initiated this study and laid the ground work with her vast knowledge of the filarial worms and detailed morphological studies of the species presented in this paper Table of contents Abstract . -
Protozoan Parasites
Welcome to “PARA-SITE: an interactive multimedia electronic resource dedicated to parasitology”, developed as an educational initiative of the ASP (Australian Society of Parasitology Inc.) and the ARC/NHMRC (Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. PARA-SITE was designed to provide basic information about parasites causing disease in animals and people. It covers information on: parasite morphology (fundamental to taxonomy); host range (species specificity); site of infection (tissue/organ tropism); parasite pathogenicity (disease potential); modes of transmission (spread of infections); differential diagnosis (detection of infections); and treatment and control (cure and prevention). This website uses the following devices to access information in an interactive multimedia format: PARA-SIGHT life-cycle diagrams and photographs illustrating: > developmental stages > host range > sites of infection > modes of transmission > clinical consequences PARA-CITE textual description presenting: > general overviews for each parasite assemblage > detailed summaries for specific parasite taxa > host-parasite checklists Developed by Professor Peter O’Donoghue, Artwork & design by Lynn Pryor School of Chemistry & Molecular Biosciences The School of Biological Sciences Published by: Faculty of Science, The University of Queensland, Brisbane 4072 Australia [July, 2010] ISBN 978-1-8649999-1-4 http://parasite.org.au/ 1 Foreword In developing this resource, we considered it essential that -
Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID -
(Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T
92 New Ectoparasite (Diptera; Phthiraptera) and Helminth (Trematoda; Cestoda; Nematoda) Geographic Records from Three Species of Owls (Strigiformes) in Southeastern Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 John M. Kinsella HelmWest Laboratory, 2108 Hilda Avenue, Missoula, MT 59801 Lance A. Durden Department of Biology, Georgia Southern University, Statesboro, GA 30458 Will K. Reeves Colorado State University, C. P. Gillette Museum of Arthropod Diversity, Fort Collins, CO 80521 Abstract: We are just now beginning to learn about the ectoparasites and helminth parasites of some owls of Oklahoma. Some recent contributions from our lab have attempted to help fill a previous void in that information. Here, we report, four taxa of ectoparasites and five helminth parasites from three species of owls in Oklahoma. They include two species of chewing lice (Strigiphilus syrnii and Kurodeia magna), two species of hippoboscid flies (Icosta americana and Ornithoica vicina), a trematode (Strigea elegans) and a cestode (Paruterina candelabraria) from barred owls (Strix varia), and three nematodes, Porrocaecum depressum from an eastern screech owl (Megascops asio), Capillaria sp. eggs from S. varia, and Capillaria tenuissima from a great horned owl (Bubo virginianus). With the exception of Capillaria sp. eggs and I. americana, all represent new state records for Oklahoma and extend our knowledge of the parasitic biota of owls of the state. to opportunistically examine raptors from the Introduction state and document new geographic records for their parasites in Oklahoma. Over 455 species of birds have been reported Methods from Oklahoma and several are species of raptors or birds of prey that make up an important Between January 2018 and September 2019, portion of the avian fauna of the state (Sutton three owls were found dead on the road in 1967; Baumgartner and Baumgartner 1992). -
Phylogenetic and Population Genetic Studies on Some Insect and Plant Associated Nematodes
PHYLOGENETIC AND POPULATION GENETIC STUDIES ON SOME INSECT AND PLANT ASSOCIATED NEMATODES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amr T. M. Saeb, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Parwinder S. Grewal, Adviser Professor Sally A. Miller Professor Sophien Kamoun Professor Michael A. Ellis Approved by Adviser Plant Pathology Graduate Program Abstract: Throughout the evolutionary time, nine families of nematodes have been found to have close associations with insects. These nematodes either have a passive relationship with their insect hosts and use it as a vector to reach their primary hosts or they attack and invade their insect partners then kill, sterilize or alter their development. In this work I used the internal transcribed spacer 1 of ribosomal DNA (ITS1-rDNA) and the mitochondrial genes cytochrome oxidase subunit I (cox1) and NADH dehydrogenase subunit 4 (nd4) genes to investigate genetic diversity and phylogeny of six species of the entomopathogenic nematode Heterorhabditis. Generally, cox1 sequences showed higher levels of genetic variation, larger number of phylogenetically informative characters, more variable sites and more reliable parsimony trees compared to ITS1-rDNA and nd4. The ITS1-rDNA phylogenetic trees suggested the division of the unknown isolates into two major phylogenetic groups: the HP88 group and the Oswego group. All cox1 based phylogenetic trees agreed for the division of unknown isolates into three phylogenetic groups: KMD10 and GPS5 and the HP88 group containing the remaining 11 isolates. KMD10, GPS5 represent potentially new taxa. The cox1 analysis also suggested that HP88 is divided into two subgroups: the GPS11 group and the Oswego subgroup.