An Overview of Extremely Large Telescopes Projects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview and Status of the Giant Magellan Telescope Project
Invited Paper Overview and Status of the Giant Magellan Telescope Project Patrick J. McCarthy*,a,b, James Fansona, Rebecca Bernsteina,b, David Ashbyc, Bruce Bigelowa, Nune Boyadjiana, Antonin Boucheza, Eric Chauvina, Eduardo Donosoa, Jose Filgueiraa, Robert Goodricha, Frank Groarka, George Jacobya, Eric Pearcea aGMTO Corporation, 451 N. Halstead St., Suite 250, Pasadena, CA 91107, USA bCarnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101, USA cLarge Binocular Telescope Observatory, Tucson AZ ABSTRACT The Giant Magellan Telescope Project is in the construction phase. Production of the primary mirror segments is underway with four of the seven required 8.4m mirrors at various stages of completion and materials purchased for segments five and six. Development of the infrastructure at the GMT site at Las Campanas is nearing completion. Power, water and data connections sufficient to support the construction of the telescope and enclosure are in place and roads to the summit have been widened and graded to support transportation of large and heavy loads. Construction pads for the support buildings have been graded and the construction residence is being installed. A small number of issues need to be resolved before the final design of the telescope structure and enclosure can proceed and the GMT team is collecting the required inputs to the decision making process. Prototyping activities targeted at the active and adaptive optics systems are allowing us to finalize designs before large scale production of components begins. Our technically driven schedule calls for the telescope to be assembled on site in 2022 and to be ready to receive a subset of the primary and secondary mirror optics late in the year. -
Experimental Facilities in Latin America
CLASHEP 2019, Villa General Belgrano, Córdoba, Argentina Experimental Facilities in Latin America Claudio O. Dib Universidad Técnica Federico Santa María, Valparaíso, Chile 7 to 5 Content: • Brief introduction to Particle Physics experiments. • Accelerator Facilities in L.A. • Astronomical Observatories in L.A. (current and future) - VLT, ALMA, DSA3, DES, LSST, GMT, ELT, LLAMA. • Current Astroparticle Facilities in L.A. - Auger - Parenthesis on Cosmic Rays and Extensive Air Showers. - LAGO, HAWC • Future Astroparticle Facilities in L.A. - CTA, ALPACA, LATTES, SGSO, ANDES • Summary 6 to 5 Particle Physics experiments: - Table top experiments E. Rutherford’s lab., Cambridge U. - Cosmic ray detection (Astroparticle Physics) - Accelerators and colliders: (cyclotrons, synchrotrons, linacs; fixed target collisions, colliding beams) 5 to 5 Past table-top experiments 1895: J.J Thomson -> electron J.J. Thomson. Credit: Cambridge U., Cavendish Lab. 1911: E. Rutherford -> nucleus & proton 1932: J. Chadwick -> neutron 4 to 5 J.A. Ratcliffe & E. Rutherford, Cavendish Lab. Cosmic ray experiments • Cosmic rays: radiation that comes from outer space. • Discovered in 1912 by Victor Hess: – Went up a Balloon up to 5300 m: Radiation is higher further above. • Named cosmic rays by R. A. Millikan. Victor F. Hess preparing the baloon flight Cosmic rays are actually… particles! (mainly protons & heavier nuclei) 3 to 5 Robert A. Millikan. Caltech archives. Cosmic ray experiments 1932: C. Anderson discovers the positron. 1947: C. Powell, G. Occhialini, C. Lattes -
Biosignatures Search in Habitable Planets
galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies. -
The Thirty-Meter Telescope: Science and Instrumentation for a Next-Generation Observatory
J. Astrophys. Astr. (2013) 34, 97–120 c Indian Academy of Sciences The Thirty-Meter Telescope: Science and Instrumentation for a Next-Generation Observatory Luc Simard TMT Observatory Corporation, 1111 South Arroyo Parkway, Suite 200, Pasadena, CA 91105, USA. e-mail: [email protected] Received 15 March 2013; accepted 25 June 2013 Abstract. The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the plan- ets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful suite of adaptive optics systems and science instruments. Three science instruments will be available at first light: an optical multi-object spectrometer, a near- infrared multi-slit spectrometer and a diffraction-limited near-infrared imager and integral field spectrometer. In addition to these three instru- ments, a diverse set of new instruments under study will bring additional workhorse capabilities to serve the science interests of a broad user community. The development of TMT instruments represents a large, long-term program that offers a wide range of opportunities to all TMT partners. Key words.Telescopes—instrumentation: spectrographs—instrumentation: photometers. 1. Introduction The Thirty-Meter Telescope (TMT) will be a flagship facility for addressing many compelling areas in astrophysics and delivering currently unforeseen discoveries in astronomy. TMT will lead a new generation of giant optical/infra-red, ground- based telescopes with fully integrated Adaptive Optics (AO). An overview of the TMT Observatory is given in Sanders (2013), and the TMT Adaptive Optics pro- gram is described in Ellerbroek (2013). -
The Giant Magellan Telescope. Status
The Giant Magellan Telescope. Status By Dr. Mauricio Pilleux Head of Administration (Chile) GMTO Corporation [email protected] April 17, 2019 Observatories in Chile: The beginnings … a successful experiment Cerro Tololo Interamerican Observatory AURA, 1962 Magellan telescopes, 2000 Las Campanas Carnegie Institution of Washington, 1968 La Silla ESO, 1969 2 Observatories in Chile: “Second stage” Very Large Telescope (VLT) Cerro Paranal, ESO, 1999 Gemini South Cerro Pachón, 2002 (AURA) ALMA NRAO-ESO-NAOJ, 2013 3 Observatories in Chile: “Stage 3.0” – big, big, big Giant Magellan Telescope (GMT) Cerro Las Campanas, 2023 (GMTO Corporation) European- Extremely Large Telescope (EELT) Cerro Armazones, 2026 (ESO) Large Synoptic Survey Telescope (LSST) Cerro Pachón, 2022 (NSF/AURA-DOE/SLAC) 4 What next? Size (physical) GMT TMT EELT LSST Main Author – Presentation Title Observatories in Chile: Where? ALMA CCAT* Nanten 2 ASTE Paranal Vista ACT 2 3 E-ELT* TAO* Apex CTA* Las Campanas GMT* Polar Bear Simons Obs. La Silla 1 Tololo SOAR Gemini LSST* 6 Giant Magellan Telescope (GMT): Will be the largest in the world in 2022 25 meters in diameter “Price”: US$1340 million First light: 2023 Enclosure is 62 m high Groundbreaking research in: . Exoplanets and their atmospheres . Dark matter . Distant objects . Unknown unknowns 7 Just how tall is the GMT? 46 meters 8 Giant Magellan Telescope (GMT): The world’s largest optical telescope Korea Sao Paulo, Brazil Texas A&M Arizona New partners are welcome! Main Author – Presentation Title 9 Central mirror casting -
Precision Optics Manufacturing and Control for Next-Generation Large
Nanomanufacturing and Metrology https://doi.org/10.1007/s41871-019-00038-2 REVIEW PAPERS Precision Optics Manufacturing and Control for Next‑Generation Large Telescopes Logan R. Graves1 · Greg A. Smith1 · Dániel Apai2,3 · Dae Wook Kim1,2 Received: 2 December 2018 / Revised: 4 February 2019 / Accepted: 7 February 2019 © International Society for Nanomanufacturing and Tianjin University and Springer Nature Singapore Pte Ltd. 2019 Abstract Next-generation astronomical telescopes will ofer unprecedented observational and scientifc capabilities to look deeper into the heavens, observe closer in time to the epoch of the Big Bang, and resolve fner details of phenomena throughout the universe. The science case for this next generation of observatories is clear, with science goals such as the discovery and exploration of extrasolar planets, exploration of dark matter and dark energy, the formation and evolution of planets, stars, galaxies, and detailed studies of the Sun. Enabling breakthrough astronomical goals requires novel and cutting-edge design choices at all stages of telescope manufacturing. In this paper, we discuss the integrated design and manufacturing of the next-generation large telescopes, from the optical design to enclosures required for optimal performance. Keywords Metrology · Fabrication · Design · Telescope · Optics · Precision 1 Introduction Expanding View of the Universe—Science with the Euro- pean Extremely Large Telescope [2]. To provide these scien- Astronomers studying new phenomena and testing increas- tifc capacities and to advance instrumentation capabilities, ingly detailed models of the universe require ever more pow- the next generation of telescopes (NGT) must provide higher erful instruments to complete their goals and collect photons spatial resolutions, larger light-collecting areas, and more which have traversed immense distances and time, some- sensitive instrumentation. -
Distributed Control of a Segmented Telescope Mirror
Distributed Control of a Segmented Telescope Mirror by Dan Kerley B.Eng., University of Victoria, 2004 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Mechanical Engineering Dan Kerley, 2010 University of Victoria All rights reserved. This thesis may not be produced in whole or in part, by photocopy or other means, without the permission of the author ii Distributed Control of a Segmented Telescope Mirror by Dan Kerley B.Eng., University of Victoria, 2004 Supervisory Committee Dr. Edward Park (Department of Mechanical Engineering) Supervisor Dr. Afzal Suleman (Department of Mechanical Engineering) Department Member Dr. Panajotis Agathoklis (Department of Electrical & Computer Engineering) Outside Member Ms. Jennifer Dunn (Herzberg Institute of Astrophysics) Additional Member iii SUPERVISORY COMMITTEE Dr. Edward Park (Department of Mechanical Engineering) Supervisor Dr. Afzal Suleman (Department of Mechanical Engineering) Department Member Dr. Panajotis Agathoklis (Department of Electrical & Computer Engineering) Non-Department Member Ms. Jennifer Dunn (Herzberg Institute of Astrophysics) Additional Member ABSTRACT As astronomers continue to examine fainter objects and farther back in time, they require increasingly large telescopes due to the fundamental diffraction of optical elements. Therefore several of the next generation optical telescopes will employ extremely large primary mirrors. However to realistically construct mirrors of these magnitudes they will need to be assembled as a collection of many smaller mirrors. This mirror segmentation leads to the additional challenge of aligning the smaller mirror elements with respect to one another, and maintain that alignment in the presence of disturbances on the optical surface and its supporting structure. -
The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview
The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview Anna M. Moore*a, James E. Larkinb, Shelley A. Wrightc,d, Brian Baumane, Jennifer Dunnf, Brent Ellerbroekg, Andrew C. Phillipsh, Luc Simardi, Ryuji Suzukij, Kai Zhangk, Ted Aliadob, George Brimsb, John Canfieldb, Shaojie Chenc, Richard Dekanya, Alex Delacroixa, Tuan Doc,d, Glen Herriotf, Bungo Ikenouej, Chris Johnsonb, Elliot Meyerc,d, Yoshiyuki Obuchij, John Pazderf, Vladimir Reshetovf, Reed Riddlea, Sakae Saitoj, Roger Smitha, Ji Man Sohnb, Fumihiro Uraguchij, Tomonori Usudaj, Eric Wangb, Lianqi Wangg, Jason Weissj and Robert Woofff aCaltech Optical Observatories,1200 E California Blvd., Pasadena, CA 91125; bDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547; cDunlap Institute for Astronomy & Astrophysics, University of Toronto, ON, Canada, M5S 3H4; dDepartment of Astronomy & Astrophysics, University of Toronto, ON, Canada, M5S 3H4; eLawrence Livermore National Laboratory, 7000 East Ave., M/S L-210, Livermore, CA 94550; fHerzberg Institute of Astrophysics (HIA), National Research Council Canada, 5071 W Saanich Rd, Victoria, V9E 2E7; gThirty Meter Telescope Observatory Corporation, 1111 S. Arroyo Pkwy, #200, Pasadena, CA 91105; hUniversity of California Observatories, CfAO, University of California, 1156 High St., Santa Cruz, CA 95064; iDominion Astrophysical Observatory, National Research Council Canada, W Saanich Rd, Victoria, V9E 2E7; jNational Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 Japan; kNanjing Institute of Astronomical Optics and Technology, Chinese Academy of Sciences, 188 Bancang St, Nanjing, Jiangsu, China 210042. ABSTRACT We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). -
India's Participation in the Thirty-Meter Telescope Project B
J. Astrophys. Astr. (2013) 34, 87–95 c Indian Academy of Sciences India’s Participation in the Thirty-Meter Telescope Project B. Eswar Reddy Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India e-mail: [email protected] Received 30 April 2013; accepted 26 June 2013 Abstract. In 2010, the Department of Science and Technology (DST), Govt. of India, approved astronomers’ proposal of India joining the inter- national consortium of the USA, Japan, Canada and China to build and operate the next generation mega ground based optical and infrared tele- scope known as the Thirty-Meter Telescope (TMT) after its aperture size of 30-meter diameter. Since then, India is engaged in many aspects of the TMT project, both at technical and policy levels. In this article, I con- fine to the description of India’s efforts leading up to the decision to join the consortium, and the progress made since then with respect to India’s technical contributions to the project. Key words. Telescope: thirty-meter telescope—India TMT: India TMT Co-ordination Center. 1. Background The quest for understanding fundamental issues such as the possible existence of life beyond the solar system, the so-called dark energy believed to be causing the Uni- verse to accelerate, and many other astrophysical phenomenon such as formation of planetary systems, and formation and evolution of stars and galaxies led astronomers the world over to propose to build the next generation mega ground-based optical and infrared telescopes. Thus formed the three independent international consortia consisting of countries and institutes cutting across the continents: The Giant Magel- lan Telescope (25-m; GMT, site: Las Campanas, Chile), the Thirty-Meter Telescope (30-m; TMT, site: Mauna Kea, Hawaii, USA) and the European-Extremely Large Telescope (39-m; E-ELT, site: Cerro Armazons, Chile). -
Thirty Meter Telescope Observatory Software Architecture K
FRBHMUST03 Proceedings of ICALEPCS2011, Grenoble, France THIRTY METER TELESCOPE OBSERVATORY SOFTWARE ARCHITECTURE K. Gillies#, C. Boyer, TMT Observatory Corporation, Pasadena, CA 91105, USA Abstract architecture takes advantage of these prior solutions when The Thirty Meter Telescope (TMT) will be a ground- possible. It’s then possible to focus attention on the based, 30-m optical-IR telescope with a highly problems unique to TMT and reuse common solutions for segmented primary mirror located on the summit of the parts of the software system that are known or of little Mauna Kea in Hawaii. The TMT Observatory Software risk. We can also improve upon the solutions used in the (OSW) system will deliver the software applications and previous generation of systems when experience has infrastructure necessary to integrate all TMT software into shown that aspects of the known solutions have issues. a single system and implement a minimal end-to-end The complexity of some aspects of the TMT software science operations system. At the telescope, OSW is control system scale with the telescope aperture size, and focused on the task of integrating and efficiently the software must also scale to handle this complexity. controlling and coordinating the telescope, adaptive Segmented mirror control for TMT requires more moving optics, science instruments, and their subsystems during parts behind the mirror and with it more sophisticated observation execution. From the software architecture control software than existing segmented mirror systems. viewpoint, the software system is viewed as a set of It’s also true that not every aspect of TMT software software components distributed across many machines complexity scales with the size of the aperture. -
Letter of Interest the US Extremely Large Telescope Program
Snowmass2021 - Letter of Interest The US Extremely Large Telescope Program Topical Group(s): (check all that apply by copying/pasting ☐/☑) ☐ (CF1) Dark Matter: Particle Like ☐ (CF2) Dark Matter: Wavelike ☑ (CF3) Dark Matter: Cosmic Probes ☐ (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe ☐ (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before ☑ (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities ☑ (CF7) Cosmic Probes of Fundamental Physics ☐ (Other) [Please specify frontier/topical group] Contact Information: Mark Dickinson (NSF’s NOIRLab) [[email protected]] for the US Extremely Large Telescope Program Authors: (long author lists can be placed after the text) Abstract: (maximum 200 words) Progress on m any important astrophysical problems requires new observations with substantially higher angular resolution and greater sensitivity than today's optical-infrared telescopes can provide. A new generation of Extremely Large Telescopes (ELTs) with >20m primary mirror diameters, operating with next-generation adaptive optics systems that deliver diffraction-limited image quality, will provide transformational new research capabilities. ELTs will enable major advances in several research topics within the Cosmic Frontiers theme including the nature of dark matter; unprecedentedly precise measurement of the cosmic expansion rate; the physics of compact object mergers identified by gravitational wave events; and tests of General Relativity's description of gravity in close proximity to the supermassive black hole in the center of our Galaxy. The US ELT Program, a collaboration between NSF's NOIRLab and the Thirty Meter Telescope and Giant Magellan Telescope projects, proposes to complete construction of a bi-hemispheric system that will provide US researchers with unique ELT coverage of the whole sky and a powerful suite of instruments. -
Wide Field Astronomical Image Compensation with Multiple Laser-Guided Adaptive Optics
Invited Paper Wide field astronomical image compensation with multiple laser-guided adaptive optics Michael Hart, N. Mark Milton, Christoph Baranec,* Thomas Stalcup, Keith Powell, Eduardo Bendek, Don McCarthy, and Craig Kulesa Center for Astronomical Adaptive Optics, The University of Arizona, Tucson, AZ 85721 *California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 ABSTRACT We report closed-loop results obtained from the first adaptive optics system to deploy multiple laser guide beacons. The system is mounted on the 6.5 m MMT telescope in Arizona, and is designed to explore advanced altitude-conjugated techniques for wide-field image compensation. Five beacons are made by Rayleigh scattering of laser beams at 532 nm integrated over a range from 20 to 29 km by dynamic refocus of the telescope optics. The return light is analyzed by a unique Shack-Hartmann sensor that places all five beacons on a single detector, with electronic shuttering to implement the beacon range gate. Wavefront correction is applied with the telescope's unique deformable secondary mirror. The system has now begun operations as a tool for astronomical science, in a mode in which the boundary-layer turbulence, close to the telescope, is compensated. Image quality of 0.2-0.3 arc sec is routinely delivered in the near infrared bands from 1.2–2.5 μm over a field of view of 2 arc min. Although it does not reach the diffraction limit, this represents a 3 to 4-fold improvement in resolution over the natural seeing, and a field of view an order of magnitude larger than conventional adaptive optics systems deliver.