Ipython Documentation Release 0.10.1

Total Page:16

File Type:pdf, Size:1020Kb

Ipython Documentation Release 0.10.1 IPython Documentation Release 0.10.1 The IPython Development Team October 11, 2010 CONTENTS 1 Introduction 1 1.1 Overview............................................1 1.2 Enhanced interactive Python shell...............................1 1.3 Interactive parallel computing.................................3 2 Installation 5 2.1 Overview............................................5 2.2 Quickstart...........................................5 2.3 Installing IPython itself....................................6 2.4 Basic optional dependencies..................................7 2.5 Dependencies for IPython.kernel (parallel computing)....................8 2.6 Dependencies for IPython.frontend (the IPython GUI).................... 10 3 Using IPython for interactive work 11 3.1 Quick IPython tutorial..................................... 11 3.2 IPython reference........................................ 17 3.3 IPython as a system shell.................................... 42 3.4 IPython extension API..................................... 47 4 Using IPython for parallel computing 53 4.1 Overview and getting started.................................. 53 4.2 Starting the IPython controller and engines.......................... 57 4.3 IPython’s multiengine interface................................ 64 4.4 The IPython task interface................................... 78 4.5 Using MPI with IPython.................................... 80 4.6 Security details of IPython................................... 83 4.7 IPython/Vision Beam Pattern Demo.............................. 88 5 Configuration and customization 95 5.1 Initial configuration of your environment........................... 95 5.2 Customization of IPython................................... 99 5.3 New configuration system................................... 103 6 Frequently asked questions 105 6.1 General questions....................................... 105 i 6.2 Questions about parallel computing with IPython....................... 105 7 History 107 7.1 Origins............................................. 107 7.2 Today and how we got here.................................. 107 8 What’s new 109 8.1 Release 0.10.1......................................... 109 8.2 Release 0.10.......................................... 111 8.3 Release 0.9.1.......................................... 114 8.4 Release 0.9........................................... 114 8.5 Release 0.8.4.......................................... 119 8.6 Release 0.8.3.......................................... 119 8.7 Release 0.8.2.......................................... 119 8.8 Older releases......................................... 119 9 IPython Developer’s Guide 121 9.1 IPython development guidelines................................ 121 9.2 Coding guide.......................................... 129 9.3 Documenting IPython..................................... 131 9.4 Development roadmap..................................... 132 9.5 IPython.kernel.core.notification blueprint........................... 134 9.6 Notes on the IPython configuration system.......................... 135 10 The IPython API 137 10.1 ColorANSI........................................... 137 10.2 ConfigLoader.......................................... 139 10.3 CrashHandler.......................................... 140 10.4 DPyGetOpt........................................... 142 10.5 Debugger............................................ 145 10.6 Itpl............................................... 147 10.7 Logger............................................. 150 10.8 Magic.............................................. 152 10.9 OInspect............................................ 174 10.10 OutputTrap........................................... 176 10.11 Prompts............................................. 179 10.12 PyColorize........................................... 181 10.13 Shell.............................................. 183 10.14 UserConfig.ipy_user_conf................................... 192 10.15 background_jobs........................................ 192 10.16 clipboard............................................ 195 10.17 completer............................................ 196 10.18 config.api............................................ 199 10.19 config.cutils.......................................... 200 10.20 deep_reload........................................... 200 10.21 demo.............................................. 201 10.22 dtutils.............................................. 210 10.23 excolors............................................. 210 ii 10.24 external.Itpl........................................... 211 10.25 external.argparse........................................ 214 10.26 external.configobj....................................... 220 10.27 external.guid.......................................... 232 10.28 external.mglob......................................... 232 10.29 external.path.......................................... 233 10.30 external.pretty......................................... 242 10.31 external.simplegeneric..................................... 247 10.32 external.validate........................................ 247 10.33 frontend.asyncfrontendbase.................................. 262 10.34 frontend.frontendbase..................................... 263 10.35 frontend.linefrontendbase................................... 265 10.36 frontend.prefilterfrontend................................... 267 10.37 frontend.process.pipedprocess................................. 268 10.38 frontend.wx.console_widget.................................. 269 10.39 frontend.wx.ipythonx..................................... 270 10.40 frontend.wx.wx_frontend................................... 271 10.41 generics............................................. 273 10.42 genutils............................................. 273 10.43 gui.wx.ipshell_nonblocking.................................. 289 10.44 gui.wx.ipython_history..................................... 291 10.45 gui.wx.ipython_view...................................... 293 10.46 gui.wx.thread_ex........................................ 297 10.47 history............................................. 297 10.48 hooks.............................................. 299 10.49 ipapi.............................................. 302 10.50 iplib............................................... 309 10.51 ipmaker............................................. 321 10.52 ipstruct............................................. 322 10.53 irunner............................................. 325 10.54 kernel.client.......................................... 329 10.55 kernel.clientconnector..................................... 330 10.56 kernel.clientinterfaces..................................... 331 10.57 kernel.codeutil......................................... 332 10.58 kernel.contexts......................................... 333 10.59 kernel.controllerservice.................................... 334 10.60 kernel.core.display_formatter................................. 336 10.61 kernel.core.display_trap.................................... 337 10.62 kernel.core.error........................................ 338 10.63 kernel.core.fd_redirector.................................... 339 10.64 kernel.core.file_like...................................... 340 10.65 kernel.core.history....................................... 341 10.66 kernel.core.interpreter..................................... 343 10.67 kernel.core.macro....................................... 348 10.68 kernel.core.magic....................................... 348 10.69 kernel.core.message_cache................................... 349 10.70 kernel.core.notification..................................... 351 10.71 kernel.core.output_trap..................................... 352 iii 10.72 kernel.core.prompts...................................... 353 10.73 kernel.core.redirector_output_trap............................... 356 10.74 kernel.core.sync_traceback_trap................................ 357 10.75 kernel.core.traceback_formatter................................ 357 10.76 kernel.core.traceback_trap................................... 358 10.77 kernel.core.util......................................... 359 10.78 kernel.engineconnector..................................... 361 10.79 kernel.enginefc......................................... 362 10.80 kernel.engineservice...................................... 365 10.81 kernel.error........................................... 373 10.82 kernel.fcutil........................................... 379 10.83 kernel.magic.......................................... 379 10.84 kernel.map........................................... 379 10.85 kernel.mapper......................................... 380 10.86 kernel.multiengine....................................... 383 10.87 kernel.multiengineclient.................................... 389 10.88 kernel.multienginefc...................................... 398 10.89 kernel.newserialized...................................... 402 10.90 kernel.parallelfunction..................................... 404 10.91 kernel.pbutil.......................................... 406 10.92 kernel.pendingdeferred..................................... 406 10.93 kernel.pickleutil........................................ 408 10.94 kernel.scripts.ipcluster..................................... 409 10.95 kernel.scripts.ipcontroller................................... 413 10.96 kernel.scripts.ipengine..................................... 414 10.97
Recommended publications
  • Epydoc: API Documentation Extraction in Python
    Epydoc: API Documentation Extraction in Python Edward Loper Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA 19104-6389, USA Abstract • All API documentation must be written (and read) in plaintext. Epydoc is a tool for generating API documentation for Python modules, based on their docstrings. It • There is no easy way to navigate through the supports several output formats (including HTML API documentation. and PDF), and understands four different markup • The API documentation is not searchable. languages (Epytext, Javadoc, reStructuredText, and plaintext). A wide variety of fields can be used to • A library's API documentation cannot be viewed supply specific information about individual objects, until that library is installed. such as descriptions of function parameters, type sig- natures, and groupings of related objects. • There is no mechanism for documenting vari- ables. 1 Introduction • There is no mechanism for \inheriting" docu- mentation (e.g. in a method that overrides its Documentation is a critical contributor to a library's base class method). This can lead to dupli- usability. Thorough documentation shows new users cation of documentation, which can often get how to use a library; and details the library's specific out-of-sync. behavior for advanced users. Most libraries can ben- efit from three different types of documentation: tu- Epydoc is a tool that automatically extracts a li- torial documentation, which introduces new users to brary's docstrings, and uses them to create API doc- the library by showing them how to perform typical umentation for the library in a variety of formats. tasks; reference documentation, which explains the li- Epydoc addresses all of these limitations: brary's overall design, and describes how the different • pieces of the library fit together; and API documenta- Docstrings can be written in a variety of markup tion, which describes the individual objects (classes, languages, including reStructuredText and Javadoc.
    [Show full text]
  • Advanced Wxpython Nuts and Bolts Robin Dunn O'reilly Open
    Advanced wxPython Nuts and Bolts Robin Dunn Software Craftsman O’Reilly Open Source Convention July 21–25, 2008 Slides available at http://wxPython.org/OSCON2008/ wxPython: Cross Platform GUI Toolkit 1 Presentation Overview • Introduction • Widget Inspection Tool • wx.ListCtrl • Keeping the UI Updated • Virtual wx.ListCtrl • Sizers and more sizers • wx.TreeCtrl • XML based resource system • wx.gizmos.TreeListCtrl • Data transfer • CustomTreeCtrl – data objects • wx.grid.Grid – clipboard • ScrolledPanel – drag and drop • wx.HtmlWindow • Creating custom widgets • Double buffered drawing wxPython: Cross Platform GUI Toolkit 2 Introduction to wxPython • wxPython is a GUI toolkit for Python, built upon the wxWidgets C++ toolkit. (See http://wxWidgets.org/) – Cross platform: Windows, Linux, Unix, OS X. – Uses native widgets/controls, plus many platform independent widgets. • Mature, well established projects. – wxWidgets: 1992 – wxPython: 1996 wxPython: Cross Platform GUI Toolkit 3 Introduction: architecture wxPython Library Proxy classes wxPython Extension Modules wxWidgets Toolkit Platform GUI Operating System wxPython: Cross Platform GUI Toolkit 4 Introduction: partial class hierarchy wx.Object wx.EvtHandler wx.Window wx.TopLevelWindow wx.Panel wx.Control wx.Frame wx.Dialog wx.ScrolledWindow wxPython: Cross Platform GUI Toolkit 5 wx.ListCtrl • Presents a list of items with one of several possible views – List – Report – Icon • Supports various attributes and operations on the list data – Icons, and colors – Sorting – multiple selection •
    [Show full text]
  • Raritas: a Program for Counting High Diversity Categorical Data with Highly Unequal Abundances
    Raritas: a program for counting high diversity categorical data with highly unequal abundances David B. Lazarus1, Johan Renaudie1, Dorina Lenz2, Patrick Diver3 and Jens Klump4 1 Museum für Naturkunde, Berlin, Germany 2 Leibniz-Institut für Zoo- und Wildtierforschung, Berlin, Germany 3 Divdat Consulting, Wesley, AR, USA 4 CSIRO, Mineral Resources, Kensington, NSW, Australia ABSTRACT Acquiring data on the occurrences of many types of difficult to identify objects are often still made by human observation, for example, in biodiversity and paleontologic research. Existing computer counting programs used to record such data have various limitations, including inflexibility and cost. We describe a new open-source program for this purpose—Raritas. Raritas is written in Python and can be run as a standalone app for recent versions of either MacOS or Windows, or from the command line as easily customized source code. The program explicitly supports a rare category count mode which makes it easier to collect quantitative data on rare categories, for example, rare species which are important in biodiversity surveys. Lastly, we describe the file format used by Raritas and propose it as a standard for storing geologic biodiversity data. ‘Stratigraphic occurrence data’ file format combines extensive sample metadata and a flexible structure for recording occurrence data of species or other categories in a series of samples. Subjects Biodiversity, Bioinformatics, Ecology, Paleontology Keywords Software, Point-counting, Rarity, Data standards, Micropaleontology, Biostratigraphy, Submitted 5 April 2018 Biodiversity, Ecology, Python, Range chart Accepted 26 July 2018 Published 9 October 2018 Corresponding author INTRODUCTION David B. Lazarus, Human observations as a source of scientific data [email protected] Quantitative data about many aspects of the natural world are collected in modern Academic editor Donald Baird science with the use of instruments, but a substantial amount of observational data is still Additional Information and collected by human observation.
    [Show full text]
  • Python Guide Documentation Publicación 0.0.1
    Python Guide Documentation Publicación 0.0.1 Kenneth Reitz 17 de May de 2018 Índice general 1. Empezando con Python 3 1.1. Eligiendo un Interprete Python (3 vs. 2).................................3 1.2. Instalando Python Correctamente....................................5 1.3. Instalando Python 3 en Mac OS X....................................6 1.4. Instalando Python 3 en Windows....................................8 1.5. Instalando Python 3 en Linux......................................9 1.6. Installing Python 2 on Mac OS X.................................... 10 1.7. Instalando Python 2 en Windows.................................... 12 1.8. Installing Python 2 on Linux....................................... 13 1.9. Pipenv & Ambientes Virtuales...................................... 14 1.10. Un nivel más bajo: virtualenv...................................... 17 2. Ambientes de Desarrollo de Python 21 2.1. Your Development Environment..................................... 21 2.2. Further Configuration of Pip and Virtualenv............................... 26 3. Escribiendo Buen Código Python 29 3.1. Estructurando tu Proyecto........................................ 29 3.2. Code Style................................................ 40 3.3. Reading Great Code........................................... 49 3.4. Documentation.............................................. 50 3.5. Testing Your Code............................................ 53 3.6. Logging.................................................. 57 3.7. Common Gotchas...........................................
    [Show full text]
  • Up & Running with Wxpython Robin Dunn Patrick O'brien O'reill
    wxPython in a Nutshell Robin Dunn http://wxPython.org/ O’Reilly Open Source Convention July 26–30, 2004 wxPython: Cross Platform GUI Toolkit 1 The best way to eat an elephant… wxPython: Cross Platform GUI Toolkit 2 …is one bite at a time wxPython: Cross Platform GUI Toolkit 3 Introduction to wxPython • wxPython is a GUI toolkit for Python, built upon the wxWidgets C++ toolkit. – Cross platform: Windows, Linux, Unix, OS X. – Uses native widgets/controls, plus many platform independent widgets. • Mature, well established projects. – wxWidgets: 1992 – wxPython: 1996 wxPython: Cross Platform GUI Toolkit 4 Introduction: architecture wxPython Library Proxy classes wxPython Extension Modules wxWidgets Toolkit Platform GUI Operating System wxPython: Cross Platform GUI Toolkit 5 Introduction: partial class hierarchy wx.Object wx.EvtHandler wx.Window wx.TopLevelWindow wx.Panel wx.Control wx.Frame wx.Dialog wx.ScrolledWindow wxPython: Cross Platform GUI Toolkit 6 Getting started with wxPython • Installation is simple -- binary installers are available at SourceForge and via http://wxPython.org/download.php for: – Windows: *.exe – Linux: *.rpm (and *.deb’s are available separately.) – OS X: *.dmg, a disk image that contains an Installer package. • Can be built from source for other Unix-like systems. wxPython: Cross Platform GUI Toolkit 7 Getting started with wxPython • Choose an installer. • Which version of Python do you use? – 2.2, or 2.3 • Unicode? – Windows, but be careful with Win9x/ME – Linux/Unix, with the GTK2 build – OS X, soon • or ANSI? – All platforms wxPython: Cross Platform GUI Toolkit 8 Getting started with wxPython • Choose an editor or development environment: – Boa Constructor – WingIDE – PyAlaMode – SCiTE – Emacs, vi, etc.
    [Show full text]
  • Week 7 " Reuse Your Own Code Top 20 Tools of All Time CS 212 – Spring 2008 (
    Programming Language as a Tool Software Tools ! Use the language that best fits your task ! Think small " Write little programs that test various concepts " Test them! " Comment them! " Build collections of these little programs Week 7 " Reuse your own code Top 20 Tools of All Time CS 212 – Spring 2008 (http://uk.gizmodo.com/) Languages for Different Domains Scripting Languages ! General purpose ! Concurrent/distributed ! A script is a sequence of ! Example scripting languages: " Examples: Lisp, Algol, PL/1, processes common commands made into a Unix shell, Python, Perl, Scheme, Java, Python " Control of multiple threads single program Tcl (Tool command language) ! Systems programming " Examples: Ada, Oz, Smalltalk, " Unix uses shell scripts " Emphasis on efficiency and Java " The shell is the interactive ! Some Python code: tight control of data ! Educational interface to Unix structures " " Examples: Basic, Haskell, You can combine commands class Stack (object): " Examples: C, C++, Forth, Pascal, Python, Scheme, from the Unix shell to create def __init__ (self): Modula-2 Smalltalk programs self.stack = [ ] ! Scripting ! Various other domains def put (self, item): self.stack.append(item) " ! Examples: Unix shell, Perl, " Discrete event simulation: A scripting language is usually def get (self): Python, Ruby, Tcl Simula " Easy to learn return self.stack.pop() " Web scripting: Javascript " Interpreted instead of def isEmpty (self): " Realtime applications: Ada compiled return len(self.stack) == 0 " Text processing: Snobol, Perl " Printing:
    [Show full text]
  • Up & Running with Wxpython Robin Dunn Patrick O'brien O'reill
    wxPython in a Nutshell Robin Dunn http://wxPython.org/ O’Reilly Open Source Convention July 26–30, 2004 wxPython: Cross Platform GUI Toolkit 1 The best way to eat an elephant… wxPython: Cross Platform GUI Toolkit 2 …is one bite at a time wxPython: Cross Platform GUI Toolkit 3 Why wxPython? • wxPython is an open source GUI toolkit based on the wxWidgets (formerly wxWindows) library • Designed to be cross-platform and supports most Unix/Linux platforms, MS Windows and Mac OS X • Uses native widgets wherever possible to preserve native Look and Feel. • Extensive sample programs, helpful and capable community • Mature, well established projects. – wxWidgets: 1992 – wxPython: 1996 wxPython: Cross Platform GUI Toolkit 4 Getting started with wxPython • Choose an installer – http://wxPython.org/downloads.php – Windows *.exe installers, Linux RPMs or OSX *.dmg – Can be built from source with a few prerequisites • Which version of Python do you use? – 2.3, 2.4, 2.5 • Unicode or ANSI? – Unicode builds available on all platforms, but be careful with Win9x/ME – ANSI available for platforms, but may be phased out soon. wxPython: Cross Platform GUI Toolkit 5 Getting started with wxPython • Choose an editor or development environment: – Boa Constructor – WingIDE – SPE – SCiTE – Emacs, vi, etc. • It’s just plain text, so any ordinary editor and command line will do. wxPython: Cross Platform GUI Toolkit 6 Getting started with wxPython • Ready, set, go! • The wxPython Demo is a great way to learn about the capabilities of the toolkit. wxPython: Cross Platform
    [Show full text]
  • Programovacı Jazyky Pro Vy´Uku Programova´Nı Na
    MASARYKOVA UNIVERZITA }w¡¢£¤¥¦§¨ FAKULTA INFORMATIKY !"#$%&'()+,-./012345<yA| Programovacı´jazyky pro vy´uku programova´nı´na SSˇ DIPLOMOVA´ PRA´ CE Bc. Luka´sˇRy´dlo Brno, 2012 Prohla´sˇenı´ Prohlasˇuji, zˇe tato diplomova´pra´ce je my´m pu˚vodnı´m autorsky´m dı´lem, ktere´ jsem vypracoval samostatneˇ. Vsˇechny zdroje, prameny a literaturu, ktere´jsem prˇi vypracova´nı´pouzˇı´val nebo z nich cˇerpal, v pra´ci rˇa´dneˇcituji s uvedenı´m u´plne´ho odkazu na prˇı´slusˇny´zdroj. Vedoucı´pra´ce: doc. RNDr. Toma´sˇPitner, Ph.D. iii Podeˇkova´nı´ Ra´d bych podeˇkoval vedoucı´mu sve´pra´ce, doc. RNDr. Toma´sˇi Pitnerovi, Ph.D. za ochotu ve´st me´te´ma, nevsˇednı´vstrˇı´cnost a trpeˇlivost i konkre´tnı´tipy. v Abstrakt Pra´ce prˇina´sˇı´zhodnocenı´ru˚zny´ch programovacı´ch jazyku˚, metodik a prostrˇedı´ pro potrˇeby vy´uky na strˇednı´ch sˇkola´ch. V u´vodnı´kapitole jsou popsane´teoreticke´ koncepty, formy vy´uky, analy´za metodik v oblasti vy´uky programova´nı´, vhodnost jednotlivy´ch paradigmat. Druha´kapitola prˇina´sˇı´prˇehled za´kladnı´ch metod graficke´ho popisu algoritmu, jejich vhodnost a vyuzˇitelnost prˇi vy´uce. Trˇetı´kapitola zacˇı´na´na´vrhem metodiky hodnocenı´programovacı´ch jazyku˚pro potrˇeby vy´uky a jejich prˇehledem. Dalsˇı´ka- pitola hodnotı´pro zmeˇnu ru˚zna´vy´vojova´prostrˇedı´, at’uzˇpouzˇı´vana´v beˇzˇne´praxi nebo urcˇena´prˇı´mo pro vy´uku. Za´veˇr pra´ce je veˇnova´n vy´ukovy´m materia´lu˚m pro semina´rˇz programova´nı´na gymna´ziu v jazyce Java metodou objects first, resp.
    [Show full text]
  • Application Programming Interface (API) Is a Specification Intended to Be Used As an Interface by Software Components to Communicate with Each Other
    Application programming interface 1 Application programming interface An application programming interface (API) is a specification intended to be used as an interface by software components to communicate with each other. An API may include specifications for routines, data structures, object classes, and variables. An API specification can take many forms, including an International Standard such as POSIX or vendor documentation such as the Microsoft Windows API, or the libraries of a programming language, e.g. Standard Template Library in C++ or Java API. An API differs from an application binary interface (ABI) in that the former is source code based while the latter is a binary interface. For instance POSIX is an API, while the Linux Standard Base is an ABI.[1] Language used An API can be: • language-dependent, meaning it is only available by using the syntax and elements of a particular language, which makes the API more convenient to use. • language-independent, written so that it can be called from several programming languages. This is a desirable feature for a service-oriented API that is not bound to a specific process or system and may be provided as remote procedure calls or web services. For example, a website that allows users to review local restaurants is able to layer their reviews over maps taken from Google Maps, because Google Maps has an API that facilitates this functionality. Google Maps' API controls what information a third-party site can use and how they can use it. The term API may be used to refer to a complete interface, a single function, or even a set of APIs provided by an organization.
    [Show full text]
  • Comparative Studies of Six Programming Languages
    Comparative Studies of Six Programming Languages Zakaria Alomari Oualid El Halimi Kaushik Sivaprasad Chitrang Pandit Concordia University Concordia University Concordia University Concordia University Montreal, Canada Montreal, Canada Montreal, Canada Montreal, Canada [email protected] [email protected] [email protected] [email protected] Abstract Comparison of programming languages is a common topic of discussion among software engineers. Multiple programming languages are designed, specified, and implemented every year in order to keep up with the changing programming paradigms, hardware evolution, etc. In this paper we present a comparative study between six programming languages: C++, PHP, C#, Java, Python, VB ; These languages are compared under the characteristics of reusability, reliability, portability, availability of compilers and tools, readability, efficiency, familiarity and expressiveness. 1. Introduction: Programming languages are fascinating and interesting field of study. Computer scientists tend to create new programming language. Thousand different languages have been created in the last few years. Some languages enjoy wide popularity and others introduce new features. Each language has its advantages and drawbacks. The present work provides a comparison of various properties, paradigms, and features used by a couple of popular programming languages: C++, PHP, C#, Java, Python, VB. With these variety of languages and their widespread use, software designer and programmers should to be aware
    [Show full text]
  • Red Hat Enterprise Linux Developer's Getting Started Guide
    WHITE PAPER RED HAT ENTERPRISE LINUX DEVELOPER'S GETTING STARTED GUIDE EXECUTIVE SUMMARY Red Hat Enterprise Linux is an enterprise-class open-source operating system that is widely adopted world wide, scaling seamlessly from individual desktops to large servers in the datacenter. Certified by leading hardware and software vendors, Red Hat Enterprise Linux delivers high performance, reliability, and security along with flexibility, efficiency, and control. For developers, Red Hat provides an extensive set of resources, technologies, and tools that can be used to efficiently develop powerful applications for the Red Hat Enterprise Linux platform. These applications can be deployed with great flexibility, as Red Hat Enterprise Linux supports major hardware architectures, comprehensive virtualization solutions, and a range of cloud-computing options. This document is intended for software developers who are new to Red Hat Enterprise Linux and want to understand the key touch points for any phase of application development – from planning and building, through testing and deploying. The following sections describe the resources and tools that are available on Red Hat Enterprise Linux and provide links to additional information. www.redhat.com WHITE PAPER RED HAT ENTERPRISE LINUX DEVELOPER'S GETTING STARTED GUIDE TABLE OF CONTENTS Developing Software On Red Hat Enterprise Linux................................................................................................4 Overview..................................................................................................................................................................................
    [Show full text]
  • Google App Engine Download Windows Google App Engine
    google app engine download windows Google App Engine. Create your own web applications using Google's infrastructure. Latest version. More and more programmers are giving the jump onto the web and programming applications that can be accessed through a browser. Google App Engine is the Google solution for programming and publishing online web applications quickly, and easily. You can use several programming languages, among which the most important are Python and Java. The documentation includes examples and tutorials so you can create an application in minutes. Google's infrastructure allows you to forget about your application's technical requirements. If you need more power, you can buy it and have it available almost instantly. Installation of Google App Engine includes an application with which you can manage the applications and load them onto your Google account. How do you host your website on Google App Engine? Google App Engine is a powerful platform that lets you build and run applications on Google’s infrastructure — whether you need to build a multi- tiered web application from scratch or host a static website. Here's a step-by-step guide to hosting your website on Google App Engine. Creating a Google Cloud Platform project. To use Google's tools for your own site or app, you need to create a new project on Google Cloud Platform. This requires having a Google account. Go to the App Engine dashboard on the Google Cloud Platform Console and press the Create button. If you've not created a project before, you'll need to select whether you want to receive email updates or not, agree to the Terms of Service, and then you should be able to continue.
    [Show full text]