A Language-Independent Static Checking System for Coding Conventions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNIX and Computer Science Spreading UNIX Around the World: by Ronda Hauben an Interview with John Lions
Winter/Spring 1994 Celebrating 25 Years of UNIX Volume 6 No 1 "I believe all significant software movements start at the grassroots level. UNIX, after all, was not developed by the President of AT&T." Kouichi Kishida, UNIX Review, Feb., 1987 UNIX and Computer Science Spreading UNIX Around the World: by Ronda Hauben An Interview with John Lions [Editor's Note: This year, 1994, is the 25th anniversary of the [Editor's Note: Looking through some magazines in a local invention of UNIX in 1969 at Bell Labs. The following is university library, I came upon back issues of UNIX Review from a "Work In Progress" introduced at the USENIX from the mid 1980's. In these issues were articles by or inter- Summer 1993 Conference in Cincinnati, Ohio. This article is views with several of the pioneers who developed UNIX. As intended as a contribution to a discussion about the sig- part of my research for a paper about the history and devel- nificance of the UNIX breakthrough and the lessons to be opment of the early days of UNIX, I felt it would be helpful learned from it for making the next step forward.] to be able to ask some of these pioneers additional questions The Multics collaboration (1964-1968) had been created to based on the events and developments described in the UNIX "show that general-purpose, multiuser, timesharing systems Review Interviews. were viable." Based on the results of research gained at MIT Following is an interview conducted via E-mail with John using the MIT Compatible Time-Sharing System (CTSS), Lions, who wrote A Commentary on the UNIX Operating AT&T and GE agreed to work with MIT to build a "new System describing Version 6 UNIX to accompany the "UNIX hardware, a new operating system, a new file system, and a Operating System Source Code Level 6" for the students in new user interface." Though the project proceeded slowly his operating systems class at the University of New South and it took years to develop Multics, Doug Comer, a Profes- Wales in Australia. -
Communication of Design Quarterly
Volume 1 Issue 2 January 2013 Communication of Design Quarterly Published by the Association for Computing Machinery Special Interest Group for Design of Communication ISSN: 2166-1642 Contents....................................................................................................................................................................................1 Editorial.....................................................................................................................................................................................3 Notes from the Chair............................................................................................................................................................5 SIGDOC 2013 conference...................................................................................................................................................7 Uncovering Analogness and Digitalness in Interactive Media.............................................................................8 Development Framework Components as Commonplaces..............................................................................37 I See You’re Talking #HPV: Communication Pattersn in the #HPV Stream on Twitter...............................50 Communication Design Quarterly ACM SIGDOC (Special Interest Group Design of Communication) seeks to be the premier information source for industry, management, and academia in the multidisciplinary field of the design and communication of information. It contains a -
Epydoc: API Documentation Extraction in Python
Epydoc: API Documentation Extraction in Python Edward Loper Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA 19104-6389, USA Abstract • All API documentation must be written (and read) in plaintext. Epydoc is a tool for generating API documentation for Python modules, based on their docstrings. It • There is no easy way to navigate through the supports several output formats (including HTML API documentation. and PDF), and understands four different markup • The API documentation is not searchable. languages (Epytext, Javadoc, reStructuredText, and plaintext). A wide variety of fields can be used to • A library's API documentation cannot be viewed supply specific information about individual objects, until that library is installed. such as descriptions of function parameters, type sig- natures, and groupings of related objects. • There is no mechanism for documenting vari- ables. 1 Introduction • There is no mechanism for \inheriting" docu- mentation (e.g. in a method that overrides its Documentation is a critical contributor to a library's base class method). This can lead to dupli- usability. Thorough documentation shows new users cation of documentation, which can often get how to use a library; and details the library's specific out-of-sync. behavior for advanced users. Most libraries can ben- efit from three different types of documentation: tu- Epydoc is a tool that automatically extracts a li- torial documentation, which introduces new users to brary's docstrings, and uses them to create API doc- the library by showing them how to perform typical umentation for the library in a variety of formats. tasks; reference documentation, which explains the li- Epydoc addresses all of these limitations: brary's overall design, and describes how the different • pieces of the library fit together; and API documenta- Docstrings can be written in a variety of markup tion, which describes the individual objects (classes, languages, including reStructuredText and Javadoc. -
Clarisse Sieckenius De Souza Academic Degrees Positions
Clarisse de Souza’s Short CV (as of December 2014) Clarisse Sieckenius de Souza Born 23.09.57 in Bento Gonçalves, State of Rio Grande do Sul, Brazil Academic degrees PhD, Applied Linguistics – Computational Linguistics, PUC‐Rio, 1988. MA, Portuguese Language, PUC‐Rio, 1982. BA, Written, Consecutive and Simultaneous Translation (Portuguese, English, French), PUC‐Rio, 1979. Positions 1982-1988 Head of Natural Language Database Querying Systems Design Group at EMBRATEL (Brazilian Telecommunications Company) 1987-1988 Visiting Professor at the Department of Informatics, PUC-Rio 1988-2006 Assistant/Associate Professor at the Department of Informatics, PUC-Rio 1989 Visiting Researcher at Philips Research Labs, Surrey UK (2 months) – with Donia Scott Visiting Scholar at CSLI (Center for the Study of Language and Information), Stanford 1991-1992 University (6 months) – with Terry Winograd Visiting Researcher (for short Winter visits, 1-2 months) at the Computer Science 1998…2001 Department, University of Waterloo (Canada), as part of collaboration with Tom Carey Visiting Professor at the Information Systems Department, University of Maryland Baltimore County (4 months) – with Jenny Preece 2002 Full Professor at the Department of Informatics, PUC-Rio. 2006-to date Research areas Human‐computer interaction. Semiotics and HCI. HCI theories. End User Development. Computer‐Mediated Communication. Cultural Dimensions in HCI. Awards and Distinctions 2010: ACM SIGDOC Rigo Award, “for extraordinary contributions to the field of communication design”. (http://sigdoc.acm.org/awards/rigo‐award/) 2013: Inducted to ACM SIGCHI CHI Academy. (http://www.sigchi.org/about/awards/2013‐ sigchi‐awards‐1) 2014: IFIP TC13 Pioneer in Human‐Computer Interaction (award to be handed over at INTERACT 2015 in Bamberg, September 2015 http://interact2015.org/) PhD supervising Currently principal supervisor of 4 PhD projects and co-supervisor of 2 PhD projects. -
Studying the Real World Today's Topics
Studying the real world Today's topics Free and open source software (FOSS) What is it, who uses it, history Making the most of other people's software Learning from, using, and contributing Learning about your own system Using tools to understand software without source Free and open source software Access to source code Free = freedom to use, modify, copy Some potential benefits Can build for different platforms and needs Development driven by community Different perspectives and ideas More people looking at the code for bugs/security issues Structure Volunteers, sponsored by companies Generally anyone can propose ideas and submit code Different structures in charge of what features/code gets in Free and open source software Tons of FOSS out there Nearly everything on myth Desktop applications (Firefox, Chromium, LibreOffice) Programming tools (compilers, libraries, IDEs) Servers (Apache web server, MySQL) Many companies contribute to FOSS Android core Apple Darwin Microsoft .NET A brief history of FOSS 1960s: Software distributed with hardware Source included, users could fix bugs 1970s: Start of software licensing 1974: Software is copyrightable 1975: First license for UNIX sold 1980s: Popularity of closed-source software Software valued independent of hardware Richard Stallman Started the free software movement (1983) The GNU project GNU = GNU's Not Unix An operating system with unix-like interface GNU General Public License Free software: users have access to source, can modify and redistribute Must share modifications under same -
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop ment of the algorithmic language ALGOL. Nevertheless, it seems perti nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text. -
Java Programming Standards & Reference Guide
Java Programming Standards & Reference Guide Version 3.2 Office of Information & Technology Department of Veterans Affairs Java Programming Standards & Reference Guide, Version 3.2 REVISION HISTORY DATE VER. DESCRIPTION AUTHOR CONTRIBUTORS 10-26-15 3.2 Added Logging Sid Everhart JSC Standards , updated Vic Pezzolla checkstyle installation instructions and package name rules. 11-14-14 3.1 Added ground rules for Vic Pezzolla JSC enforcement 9-26-14 3.0 Document is continually Raymond JSC and several being edited for Steele OI&T noteworthy technical accuracy and / PD Subject Matter compliance to JSC Experts (SMEs) standards. 12-1-09 2.0 Document Updated Michael Huneycutt Sr 4-7-05 1.2 Document Updated Sachin Mai L Vo Sharma Lyn D Teague Rajesh Somannair Katherine Stark Niharika Goyal Ron Ruzbacki 3-4-05 1.0 Document Created Sachin Sharma i Java Programming Standards & Reference Guide, Version 3.2 ABSTRACT The VA Java Development Community has been establishing standards, capturing industry best practices, and applying the insight of experienced (and seasoned) VA developers to develop this “Java Programming Standards & Reference Guide”. The Java Standards Committee (JSC) team is encouraging the use of CheckStyle (in the Eclipse IDE environment) to quickly scan Java code, to locate Java programming standard errors, find inconsistencies, and generally help build program conformance. The benefits of writing quality Java code infused with consistent coding and documentation standards is critical to the efforts of the Department of Veterans Affairs (VA). This document stands for the quality, readability, consistency and maintainability of code development and it applies to all VA Java programmers (including contractors). -
Security Applications of Formal Language Theory
Dartmouth College Dartmouth Digital Commons Computer Science Technical Reports Computer Science 11-25-2011 Security Applications of Formal Language Theory Len Sassaman Dartmouth College Meredith L. Patterson Dartmouth College Sergey Bratus Dartmouth College Michael E. Locasto Dartmouth College Anna Shubina Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr Part of the Computer Sciences Commons Dartmouth Digital Commons Citation Sassaman, Len; Patterson, Meredith L.; Bratus, Sergey; Locasto, Michael E.; and Shubina, Anna, "Security Applications of Formal Language Theory" (2011). Computer Science Technical Report TR2011-709. https://digitalcommons.dartmouth.edu/cs_tr/335 This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Security Applications of Formal Language Theory Dartmouth Computer Science Technical Report TR2011-709 Len Sassaman, Meredith L. Patterson, Sergey Bratus, Michael E. Locasto, Anna Shubina November 25, 2011 Abstract We present an approach to improving the security of complex, composed systems based on formal language theory, and show how this approach leads to advances in input validation, security modeling, attack surface reduction, and ultimately, software design and programming methodology. We cite examples based on real-world security flaws in common protocols representing different classes of protocol complexity. We also introduce a formalization of an exploit development technique, the parse tree differential attack, made possible by our conception of the role of formal grammars in security. These insights make possible future advances in software auditing techniques applicable to static and dynamic binary analysis, fuzzing, and general reverse-engineering and exploit development. -
To Type Or Not to Type: Quantifying Detectable Bugs in Javascript
To Type or Not to Type: Quantifying Detectable Bugs in JavaScript Zheng Gao Christian Bird Earl T. Barr University College London Microsoft Research University College London London, UK Redmond, USA London, UK [email protected] [email protected] [email protected] Abstract—JavaScript is growing explosively and is now used in to invest in static type systems for JavaScript: first Google large mature projects even outside the web domain. JavaScript is released Closure1, then Microsoft published TypeScript2, and also a dynamically typed language for which static type systems, most recently Facebook announced Flow3. What impact do notably Facebook’s Flow and Microsoft’s TypeScript, have been written. What benefits do these static type systems provide? these static type systems have on code quality? More concretely, Leveraging JavaScript project histories, we select a fixed bug how many bugs could they have reported to developers? and check out the code just prior to the fix. We manually add The fact that long-running JavaScript projects have extensive type annotations to the buggy code and test whether Flow and version histories, coupled with the existence of static type TypeScript report an error on the buggy code, thereby possibly systems that support gradual typing and can be applied to prompting a developer to fix the bug before its public release. We then report the proportion of bugs on which these type systems JavaScript programs with few modifications, enables us to reported an error. under-approximately quantify the beneficial impact of static Evaluating static type systems against public bugs, which type systems on code quality. -
Devsecops in Reguated Industries Capgemini Template.Indd
DEVSECOPS IN REGULATED INDUSTRIES ACCELERATING SOFTWARE RELIABILITY & COMPLIANCE TABLE OF CONTENTS 03... Executive Summary 04... Introduction 07... Impediments to DevSecOps Adoption 10... Playbook for DevSecOps Adoption 19... Conclusion EXECUTIVE SUMMARY DevOps practices enable rapid product engineering delivery and operations, particularly by agile teams using lean practices. There is an evolution from DevOps to DevSecOps, which is at the intersection of development, operations, and security. Security cannot be added after product development is complete and security testing cannot be done as a once-per-release cycle activity. Shifting security Left implies integration of security at all stages of the Software Development Life Cycle (SDLC). Adoption of DevSecOps practices enables faster, more reliable and more secure software. While DevSecOps emerged from Internet and software companies, it can benefit other industries, including regulated and high security environments. This whitepaper covers how incorporating DevSecOps in regulated Industries can accelerate software delivery, reducing the time from code change to production deployment or release while reducing security risks. This whitepaper defines a playbook for DevSecOps goals, addresses challenges, and discusses evolving workflows in DevSecOps, including cloud, agile, application modernization and digital transformation. Bi-directional requirement traceability, document generation and security tests should be part of the CI/CD pipeline. Regulated industries can securely move away -
Probabilistic Models for the Guarded Command Language
Science of Computer Programming ELSEVIER Science of Computer Programming 28 (1997) 171-192 Probabilistic models for the guarded command language He Jifeng *, K. Seidel, A. McIver Oxford University Computing Laboratory, Programming Research Group, 11 Keble. Road, Oxford OXI 3QD, UK Abstract The two models presented in this paper provide two different semantics for an extension of Dijkstra’s language of guarded commands. The extended language has an additional operator, namely probabilistic choice, which makes it possible to express randomized algorithms. An earlier model by Claire Jones included probabilistic choice but not non-determinism, which meant that it could not be used for the development of algorithms from specifications. Our second model is built on top of Claire Jones’ model, using a general method of extending a probabilistic cpo to one which abo contains non-determinism. The first model was constructed from scratch, as it were, guided only by the desire for certain algebraic properties of the language constructs, which we found lacking in the second model. We compare and contrast the properties of the two models both by giving examples and by constructing mappings between them and the non-probabilistic model. On the basis of this comparison we argue that, in general, the first model is preferable to the second. @ 1997 Elsevier Science B.V. Keywords: Probabilistic programming language; Semantics; Algebraic laws 1. Introduction Dijkstra’s language of guarded commands with its weakest precondition semantics [l] put reasoning about sequential imperative programs on a secure footing. The aim of this paper is to extend this language, its semantics, and formal reasoning to sequential randomized algorithms. -
Design of Instructional Modeling Language for Learning Objects and Learning Objects╎ Repositories
University of Northern Colorado Scholarship & Creative Works @ Digital UNC Dissertations Student Research 8-2019 Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories Altaf Siddiqui Follow this and additional works at: https://digscholarship.unco.edu/dissertations Recommended Citation Siddiqui, Altaf, "Design of Instructional Modeling Language for Learning Objects and Learning Objects’ Repositories" (2019). Dissertations. 588. https://digscholarship.unco.edu/dissertations/588 This Text is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Dissertations by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. ©2019 ALTAF SIDDIQUI ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School DESIGN OF INSTRUCTIONAL MODELING LANGUAGE FOR LEARNING OBJECTS AND LEARNING OBJECTS’ REPOSITORIES A Capstone Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy Altaf Siddiqui College of Education and Behavioral Sciences Department of Educational Technology August 2019 This Capstone by: Altaf Siddiqui Entitled: Design of Instructional Modeling Language for Learning Objects and Learning Objects Repositories has been approved as meeting the requirement for the Degree of Doctor of Audiology in College of Education and Behavioral Sciences in Department of Educational Technology