Resource Use and Coexistence of Sympatric Tasmanian Devils and Spotted-Tailed Quolls

Total Page:16

File Type:pdf, Size:1020Kb

Resource Use and Coexistence of Sympatric Tasmanian Devils and Spotted-Tailed Quolls Resource use and coexistence of sympatric Tasmanian devils and spotted-tailed quolls Georgina Elizabeth Andersen (MSc, BSc) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences University of Tasmania May 2016 Statements by the author Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Statement of ethical conduct The research associated with this thesis was conducted in compliance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. The research presented in this thesis was carried out in accordance with the University of Tasmania Animal Ethics Committee Permit # A12361 and with permission from the Tasmanian Department of Primary Industries, Parks, Water and Environment (DPIPWE) under the scientific permits TFA12166 and TFA13969. Signed: _______________________________ Georgina E. Andersen 03/05/2016 2 Statement of co-authorship The following people contributed to the work undertaken as part of this thesis: Georgina Andersen (Candidate), School of Biological Sciences, University of Tasmania, Hobart, Australia Menna Jones (Primary supervisor), School of Biological Sciences, University of Tasmania, Hobart, Australia Christopher Johnson (Secondary supervisor), School of Biological Sciences, University of Tasmania, Hobart, Australia Leon Barmuta (Co-author on chapter 2 and 4), School of Biological Sciences, University of Tasmania, Hobart, Australia Chapter details and relative author contributions are listed below: Chapter 2 is in preparation for publication: Andersen, G.E., Johnson, C.N., Barmuta, L.A., and Jones, M.E. Diet composition and overlap of two sympatric carnivores, the Tasmanian devil and spotted-tailed quoll Georgina Andersen was the primary investigator and lead author. Chris Johnson and Menna Jones contributed to the idea, the study design and edited chapters. Leon Barmuta assisted with statistical advice. Chapter 3 is in preparation for Wildlife Research: Andersen, G.E., Johnson, C.N., and Jones, M.E. Spatial ecology of sympatric Tasmanian devils and spotted-tailed quolls. Georgina Andersen was the primary investigator and lead author. Chris Johnson and Menna Jones contributed to the idea, the study design and edited chapters. Chapter 4 is in review in Journal of Applied Ecology: Andersen, G.E., Johnson, C.N., Barmuta, L.A., and Jones, M.E. Anthropogenic habitat modification enhances traveling and hunting opportunities for two medium-sized carnivores. 3 Georgina Andersen was the primary investigator and lead author. Chris Johnson and Menna Jones contributed to the idea, the study design and edited chapters. Leon Barmuta assisted with statistical advice. Chapter 5 is published in Behavioural Ecology and Sociobiology: Andersen, G.E., Johnson, C.N., and Jones, M.E. Sympatric predator odour reveals a competitive relationship in size-structured mammalian carnivores. Georgina Andersen was the primary investigator and lead author. Chris Johnson and Menna Jones contributed to the idea, the study design and edited chapters. We the undersigned agree with the above stated “proportion of work undertaken” for each of the above submitted peer-reviewed manuscripts contributing to this thesis: Signed: Signed: Menna Jones Anthony Koutoulis Primary Supervisor Head of School School of Biological Sciences School of Biological Sciences University of Tasmania University of Tasmania 4th November 2016 4th November 2016 4 Acknowledgements I would first like to thank my supervisors Menna Jones and Chris Johnson for letting me embark on this great project, which has taught me so much and challenged me in many ways. Thank you Menna for your enthusiasm, support and many discussions on devils and quolls. Thank you Chris for responding to my email enquiring about a PhD and for offering me such an amazing project. You always helped me see the bigger picture and provided sound advice when I needed it. Much of my PhD was spent in the beautiful Arthur-Pieman Conservation Area (APCA), which quickly became my second Tassie home. A huge thank you to the rangers of the APCA, for all your help over the past 4 years and for always welcoming me back! A special thanks to Mel Pfieffer, who became a good friend and constant support during field work. Thanks for putting up with some major bush bashing expeditions after dropped GPS collars and for chats over morning tea. Thank you Greg Cash for providing me with the nicest field accommodation, despite the kookaburra attacks! I could not have successfully completed field work without the help of all my volunteers. So a massive thank you to all those that helped me check traps at the crack of dawn and radio-track/bush bash come rain or shine. My field work acknowledgements would not be complete without thanking all the devils and quolls that took part in this study. I have had some truly memorable experiences during field work that I will always cherish. I also would like to thank several funding bodies who made this project possible: The Holsworth Wildlife Research Endowment, the Dr Eric Guiler Tasmanian Devil Research Fund and the Australian Research Council. I was the recipient of the Australian Postgraduate Award and the Tasmanian Devil Elite Scholarship. To the people at UTAS, a huge thanks goes out to the various office mates that have helped keep me sane, whist I was in the office: Halley Durrant, Shannon Troy, Lisa Cawthen and Paul Botwe. A special thanks to Halley Durrant, for all the laughs, the morning coffee chats and just for making being in the office a little more bearable! A 5 big thanks to Shannon Troy for helping me find such an amazing study site, for statistical help and for proof reading my general introduction and discussion. Thanks to the past and present postgrads for your support and friendship especially Anna Bruniche Olsen, Nick Fountain-Jones, Hugh McGregor, Bronwyn Fancourt, Amy Edwards, Jo McEvoy, Vince Scoleri, Sebastian Comte, David Hamilton and Rowena Hamer. I would also like to thank the various staff members in the School of Biological Sciences for help with everything administrative: Felicity Wilkinson, Adam Stephens, Jenny Sprent, Richard Holmes, Wayne Kelly, Barry Rumbold, Jodi Noble, Clancy Carver and Erik Wapstra. Thank you to Barry Wells for animal welfare advice and teaching me how to sedate feral cats. I’d also like to thank Katrine Sorensen and Amy Dunlop for helping to identify prey species from scats. I am also very grateful to Leon Barmuta and Joanna Potts for statistical advice and R code help. I would have been seriously stuck without your help! Thanks to the soccer team at uni for providing some much needed distraction during the write up and for giving me a good excuse to kick something and occasionally someone, oops To my friends back in Denmark, Mette Richner, Inge Findorf, Louise Toft Iversen and Maria Jellesmark, I cannot thank you enough for your love and support throughout the years. Thanks for always remaining my friends no matter where in the world my travels take me! I am eternally grateful to my parents and sister for your unconditional love and support. You have always encouraged me to follow my dreams and helped me along the way whenever I needed it. Finally, I would like to dedicate this thesis to the late Geoff King, the king of conservation in the North West. My first field season would have been a lot harder without your knowledge of the devils and quolls in the APCA and your help whenever I needed it. As we used to say “long live the devils of Arthur River” 6 Abstract Interactions between sympatric carnivores are among the key factors influencing community structure and function, and strongly affecting the population dynamics, distribution and behaviour of the interacting species. Interspecific competition occurs in two ways: exploitation competition occurs when a resource unit is consumed by one species so it cannot be consumed by another; interference competition involves direct aggressive encounters (e.g. fighting) or the threat of aggression, thereby excluding a competitor from a resource. The strength of competition between carnivores varies with factors such as body size, diet and population density. Interspecific competition is often asymmetrical such that the smaller carnivore is most affected. Due to the competitive effects that apex predators can have on sympatric carnivores, their removal from a system can result in a ‘mesopredator release’, which in turn can lead to increased predation on smaller prey species. To minimise competition and facilitate coexistence, the subordinate species can either avoid spatial overlap with the dominant species or modify temporal or behavioural patterns to reduce the chance of encounters and interactions, but still allow for spatial overlap. The intensity of competition can be reduced in species that have co- existed for a long time through coevolution of divergent ecomorphological and behavioural traits that influence the size and type of prey that are eaten. Current competition can be difficult to measure, as competition may only occur when resources are severely limited such as during drought, and can be subtle where there is a long coevolutionary history among the species. As interspecific competition between carnivores can strongly influence abundance and distribution, understanding how carnivores interact and the extent that competition might influence their ecology and demography is crucial in managing and conserving them. The Tasmanian devil (Sarcophilus harrisii) is Tasmania’s largest marsupial carnivore (5 - 14kg) and coexists with the smaller spotted-tailed quoll (Dasyurus maculatus) (0.9 - 5kg).
Recommended publications
  • Spatial Ecology of the Tasmanian Spotted-Tailed Quoll
    Spatial Ecology of the Tasmanian Spotted-Tailed Quoll Shannon Nichole Troy Bachelor of Science in Environmental Science, Flinders University of South Australia Honours, Biological Science, Monash University Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences University of Tasmania November 2014 Preface Author Declarations Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. November 2014 Shannon Troy Date Authority of Access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. November 2014 Shannon Troy Date i Preface Author Declarations Statement of Ethical Conduct The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. November 2014 Shannon Troy Date ii Preface Acknowledgements Acknowledgements I am very fortunate to have been supervised by a group of outstanding ecologists and wonderful people. Thanks to my primary supervisor, Menna Jones, for the opportunity to undertake a PhD, allowing me to take it in my own direction, providing enthusiasm and support for my ideas, and lots of interesting discussions about predator ecology.
    [Show full text]
  • Lindsay Masters
    CHARACTERISATION OF EXPERIMENTALLY INDUCED AND SPONTANEOUSLY OCCURRING DISEASE WITHIN CAPTIVE BRED DASYURIDS Scott Andrew Lindsay A thesis submitted in fulfillment of requirements for the postgraduate degree of Masters of Veterinary Science Faculty of Veterinary Science University of Sydney March 2014 STATEMENT OF ORIGINALITY Apart from assistance acknowledged, this thesis represents the unaided work of the author. The text of this thesis contains no material previously published or written unless due reference to this material is made. This work has neither been presented nor is currently being presented for any other degree. Scott Lindsay 30 March 2014. i SUMMARY Neosporosis is a disease of worldwide distribution resulting from infection by the obligate intracellular apicomplexan protozoan parasite Neospora caninum, which is a major cause of infectious bovine abortion and a significant economic burden to the cattle industry. Definitive hosts are canid and an extensive range of identified susceptible intermediate hosts now includes native Australian species. Pilot experiments demonstrated the high disease susceptibility and the unexpected observation of rapid and prolific cyst formation in the fat-tailed dunnart (Sminthopsis crassicaudata) following inoculation with N. caninum. These findings contrast those in the immunocompetent rodent models and have enormous implications for the role of the dunnart as an animal model to study the molecular host-parasite interactions contributing to cyst formation. An immunohistochemical investigation of the dunnart host cellular response to inoculation with N. caninum was undertaken to determine if a detectable alteration contributes to cyst formation, compared with the eutherian models. Selective cell labelling was observed using novel antibodies developed against Tasmanian devil proteins (CD4, CD8, IgG and IgM) as well as appropriate labelling with additional antibodies targeting T cells (CD3), B cells (CD79b, PAX5), granulocytes, and the monocyte-macrophage family (MAC387).
    [Show full text]
  • Marsupial Mole Survey 2008
    Marsupial Mole Survey Etadunna Station, June 2008 Reece Pedler Community Fauna Officer SA Arid Lands NRM Board Background Marsupial Moles are a little-known creature found in the sandy inland regions of Australia. Their extremely unusual life habits involve spending almost their entire lives beneath the soil surface. Consequently very little is known about the most basic details of their lives including their behavior, diet, status and distribution. In South Australia, Marsupial Moles are currently known only from the far north and west of the state, including the Anangu Pitjantjatjara Lands, the Maralinga Tjarutja Lands and the western side of the Simpson Desert. However, the difficulties in detecting moles and the lack of survey effort aimed at searching for them in other areas means that their range could well be more widespread than currently known. The aim of the current survey was to follow up on a possible sighting of a Marsupial Mole, which was made by Andrew Black on Etadunna Station in 2002 while excavating with a bulldozer. A previous trip was made to Etadunna in 2006 by Michelle Watson from the SA Arid Lands NRM to try and locate the area of the sighting and look for tracks of other small mammal species. At this time, the area of the sighting was thought to be near Georgia Bore, approximately 50 km west of the Birdsville Track in the southern area of the Tirari Desert. However, after talking directly with Andrew (in May 2008) it was discovered that the sighting was actually made near Boolcaltaninna Bore, to the east of the Birdsville track, north of Lake Gregory.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • The Hunter and Biodiversity in Tasmania
    The Hunter and Biodiversity in Tasmania The Hunter takes place on Tasmania’s Central Plateau, where “One hundred and sixty-five million years ago potent forces had exploded, clashed, pushed the plateau hundreds of metres into the sky.” [a, 14] The story is about the hunt for the last Tasmanian tiger, described in the novel as: “that monster whose fabulous jaw gapes 120 degrees, the carnivorous marsupial which had so confused the early explorers — a ‘striped wolf’, ‘marsupial wolf.’” [a, 16] Fig 1. Paperbark woodlands and button grass plains near Derwent Bridge, Central Tasmania. Source: J. Stadler, 2010. Biodiversity “Biodiversity”, or biological diversity, refers to variety in all forms of life—all plants and animals, their genes, and the ecosystems they live in. [b] It is important because all living things are connected with each other. For example, humans depend on living things in the environment for clean air to breathe, food to eat, and clean water to drink. Biodiversity is one of the underlying themes in The Hunter, a Tasmanian film directed by David Nettheim in 2011 and based on Julia Leigh’s 1999 novel about the hunt for the last Tasmanian Tiger. The film and the novel showcase problems that arise from loss of species, loss of habitat, and contested ideas about land use. The story is set in the Central Plateau Conservation Area and much of the film is shot just south of that area near Derwent Bridge and in the Florentine Valley. In Tasmania, land clearing is widely considered to be the biggest threat to biodiversity [c, d].
    [Show full text]
  • MORNINGTON PENINSULA BIODIVERSITY: SURVEY and RESEARCH HIGHLIGHTS Design and Editing: Linda Bester, Universal Ecology Services
    MORNINGTON PENINSULA BIODIVERSITY: SURVEY AND RESEARCH HIGHLIGHTS Design and editing: Linda Bester, Universal Ecology Services. General review: Sarah Caulton. Project manager: Garrique Pergl, Mornington Peninsula Shire. Photographs: Matthew Dell, Linda Bester, Malcolm Legg, Arthur Rylah Institute (ARI), Mornington Peninsula Shire, Russell Mawson, Bruce Fuhrer, Save Tootgarook Swamp, and Celine Yap. Maps: Mornington Peninsula Shire, Arthur Rylah Institute (ARI), and Practical Ecology. Further acknowledgements: This report was produced with the assistance and input of a number of ecological consultants, state agencies and Mornington Peninsula Shire community groups. The Shire is grateful to the many people that participated in the consultations and surveys informing this report. Acknowledgement of Country: The Mornington Peninsula Shire acknowledges Aboriginal and Torres Strait Islanders as the first Australians and recognises that they have a unique relationship with the land and water. The Shire also recognises the Mornington Peninsula is home to the Boonwurrung / Bunurong, members of the Kulin Nation, who have lived here for thousands of years and who have traditional connections and responsibilities to the land on which Council meets. Data sources - This booklet summarises the results of various biodiversity reports conducted for the Mornington Peninsula Shire: • Costen, A. and South, M. (2014) Tootgarook Wetland Ecological Character Description. Mornington Peninsula Shire. • Cook, D. (2013) Flora Survey and Weed Mapping at Tootgarook Swamp Bushland Reserve. Mornington Peninsula Shire. • Dell, M.D. and Bester L.R. (2006) Management and status of Leafy Greenhood (Pterostylis cucullata) populations within Mornington Peninsula Shire. Universal Ecology Services, Victoria. • Legg, M. (2014) Vertebrate fauna assessments of seven Mornington Peninsula Shire reserves located within Tootgarook Wetland.
    [Show full text]
  • Thylacinidae
    FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21.
    [Show full text]
  • An Investigation Into Factors Affecting Breeding Success in The
    An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) Tracey Catherine Russell Faculty of Science School of Life and Environmental Science The University of Sydney Australia A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy 2018 Faculty of Science The University of Sydney Table of Contents Table of Figures ............................................................................................................ viii Table of Tables ................................................................................................................. x Acknowledgements .........................................................................................................xi Chapter Acknowledgements .......................................................................................... xii Abbreviations ................................................................................................................. xv An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) .................................................................................................. xvii Abstract ....................................................................................................................... xvii 1 Chapter One: Introduction and literature review .............................................. 1 1.1 Devil Life History ...................................................................................................
    [Show full text]
  • Tasmanian Treatment
    Tasmanian treatment Professor Greg Woods discusses his work to save the Tasmanian devil from extinction by a devastatingly contagious cancer, and elaborates on the research that has guided him in his pursuit of this disease University of Tasmania to continue my research Could you outline the most prominent on leukaemia. I obtained a lectureship and challenges you face in your studies? began teaching immunology. My research then switched focus to how cancers escape Developing a consistent method to activate recognition by the immune system. In early the devil’s immune response that will protect 2000 it became apparent that Tasmanian devils against the cancer. In other words, developing were dying from a disfiguring facial cancer; by a vaccine. If a vaccine is possible, it is difficult PROFESSOR GREG WOODS PROFESSOR 2006, it was clear that this was a transmissible to predict how far away it is, at least five years cancer, passing from one devil to another. – but who knows what’s around the corner? This was a perfect example of a cancer that Our work is the major project driving the escaped recognition by the immune system, development of a vaccine, so our results will and it was occurring in Tasmania, the only place be essential. where Tasmanian devils could be found – it seemed that destiny had determined that my How does collaboration advance the global research would focus on the immune escape fight against cancer? Has a multidisciplinary mechanisms of DFTD. approach proven important to the success of your own work? What are the aetiology and symptoms of DFTD and how does it affect the immune Collaboration is an important aspect of our To begin, could you provide an insight into system of the Tasmanian devil? research.
    [Show full text]
  • Impact of Fox Baiting on Tiger Quoll Populations Project ID: 00016505
    Impact of fox baiting on tiger quoll populations Project ID: 00016505 Final Report to Environment Australia and The New South Wales National Parks and Wildlife Service Gerhard Körtner and Shaan Gresser Copyright G. Körtner Executive Summary: The NSW Threat Abatement Plan for Predation by the Red Fox (TAP) identifies foxes as a major threat to the survival of many native mammals. The plan recommends baiting with compound 1080 (sodium monofluoroacetate) because it appears to be the most effective fox control measure. However, the plan also recognises the risk for tiger quolls as a non-target species. Although the actual impact of 1080 fox baiting on tiger quoll populations has not been assessed, this assumed risk has resulted in restrictions on the use of 1080 which render fox baiting programs labour intensive and expensive and which may compromise the effectiveness of the fox control. The aim of this project is to determine whether these precautions are necessary by measuring tiger quoll mortality during fox baiting programs using 1080. The project has been identified as a priority action (Obj. 2, action 5) of the TAP. Three experiments were conducted in north-east NSW between June 2000 and December 2001. Overall 78 quolls were trapped and 56 of those were fitted with mortality radio-transmitters. Baiting procedure followed Best Practice Guidelines (TAP) except that there was no free-feeding and baits were only surface buried. These modifications aimed to increase the exposure of quolls to bait. 1080 baits (3 mg / bait; Foxoff®) incorporating the bait marker Rhodamine B were deployed for 10 days along existing trails.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Spotted Tailed Quoll (Dasyurus Maculatus)
    Husbandry Guidelines for the SPOTTED-TAILED QUOLL (Tiger Quoll) (Photo: J. Marten) Dasyurus maculatus (MAMMALIA: DASYURIDAE) Author: Julie Marten Date of Preparation: February 2013 – June 2014 Western Sydney Institute of TAFE, Richmond Course Name and Number: Captive Animals Certificate III (18913) Lecturers: Graeme Phipps, Jacki Salkeld, Brad Walker DISCLAIMER Please note that this information is just a guide. It is not a definitive set of rules on how the care of Spotted- Tailed Quolls must be conducted. Information provided may vary for: • Individual Spotted-Tailed Quolls • Spotted-Tailed Quolls from different regions of Australia • Spotted-Tailed Quolls kept in zoos versus Spotted-Tailed Quolls from the wild • Spotted-Tailed Quolls kept in different zoos Additionally different zoos have their own set of rules and guidelines on how to provide husbandry for their Spotted-Tailed Quolls. Even though I researched from many sources and consulted various people, there are zoos and individual keepers, researchers etc. that have more knowledge than myself and additional research should always be conducted before partaking any new activity. Legislations are regularly changing and therefore it is recommended to research policies set out by national and state government and associations such as ARAZPA, ZAA etc. Any incident resulting from the misuse of this document will not be recognised as the responsibility of the author. Please use at the participants discretion. Any enhancements to this document to increase animal care standards and husbandry techniques are appreciated. Otherwise I hope this manual provides some helpful information. Julie Marten Picture J.Marten 2 OCCUPATIONAL HEALTH AND SAFETY RISKS It is important before conducting any work that all hazards are identified.
    [Show full text]