Observations and Theory of Star Cluster Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
02 Southern Cross
Asterism Southern Cross The Southern Cross is located in the constellation Crux, the smallest of the 88 constellations. It is one of the most distinctive. With the four stars Mimosa BeCrux, Ga Crux, A Crux and Delta Crucis, forming the arms of the cross. The Southern Cross was also used as a remarkably accurate timepiece by all the people of the southern hemisphere, referred to as the ‘Southern Celestial Clock’ by the portuguese naturalist Cristoval D’Acosta. It is perpendicular as it passes the meridian, and the exact time can thus be calculated visually from its angle. The german explorer Baron Alexander von Humboldt, sailing across the southern oceans in 1799, wrote: “It is a timepiece, which advances very regularly nearly 4 minutes a day, and no other group of stars affords to the naked eye an observation of time so easily made”. Asterism - An asterism is a distinctive pattern of stars or a distinctive group of stars in the sky. Constellation - A grouping of stars that make an imaginary picture in the sky. There are 88 constellations. The stars and objects nearby The Main-Themes in asterism Southern Cross Southern Cross Ga Crux A Crux Mimosa, Be Crux Delta Crucis The Motives in asterism Southern Cross Crucis A Bayer / Flamsteed indication AM Arp+Madore - A Catalogue of Southern peculiar Galaxies and Associations [B10] Boss, 1910 - Preliminary General Catalogue of 6188 Stars C Cluster CCDM Catalogue des composantes d’étoiles doubles et multiples CD Cordoba Durchmusterung Declination Cel Celescope Catalog of ultraviolet Magnitudes CPC -
Density Profiles of Populous Star Clusters in the Magellanic Clouds
Density profiles of populous star clusters in the Magellanic Clouds Grigor Nikolov,1,2 Anastasos Dapergolas,3 Mary Kontizas,2 Valeri Golev,1 Maya Belcheva2 1 Department of Astronomy, Faculty of Physics, Sofia University, BG-1164 Sofia, Bulgaria 2 Department of Astrophysics, Astronomy & Mechanics, Faculty of Physics, University of Athens, GR-15783 Athens, Greece 3 IAA, National Observatory of Athens, GR-11810 Athens, Greece [email protected] (Conference poster) Abstract. The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) provide the unique opportunity to study young and populous star clusters. Some of them are elliptical in shape, or are members of a multiple systems, which are almost absent in the Milky Way. We have selected a sample of Magellanic Clouds’ star clusters, some of them candidates of a multiple system components, to investigate them by means of their number density profiles. This approach allows us to determine the radial distribution of the stars of different magnitude. Since the brighter stars have larger masses than the fainter stars, the profiles can be used to trace mass-segregation in the clusters. We have fitted a theoretical model by Elson, Fall & Freeman [1987] to determine the core radius and the concentration of the stars for each magnitude range. Key words: star clusters Профили на плътността на населени звездни купове в Магелановите облаци Григор Николов, Анастасос Даперголас, Мери Контизас, Валери Голев, Мая Белчева Големият и Малкият Магеланови облаци предлагат уникалната възможност за изуча- ване на млади богато населени звездни купове. Някои от тях имат елиптична форма или са членове на двойни системи, каквито се срещат много рядко в Млечния път. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Constellation Is the Corona Australis
CORONA AUSTRALIS, THE SOUTHERN CROWN Corona Australis is a constellation in the southern celestial hemisphere. Its Latin name means "southern crown", and it is the southern counterpart of Corona Borealis, the northern crown. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations. The Ancient Greeks saw Corona Australis as a wreath rather than a crown and associated it with Sagittarius or Centaurus. Other cultures have likened the pattern to a turtle, ostrich nest, a tent, or even a hut belonging to a rock hyrax (a shrewmouse; a small, well-furred, rotund animals with short tails). Although fainter than its northern namesake, the oval - or horseshoe-shaped pattern of its brighter stars renders it distinctive. Alpha and Beta Coronae Australis are its two brightest stars with an apparent magnitude of around 4.1. Epsilon Coronae Australis is the brightest example of a W Ursae Majoris variable in the southern sky (an eclipsing contact binary). Lying alongside the Milky Way, Corona Australis contains one of the closest star-forming regions to our Solar System —a dusty dark nebula known as the Corona Australis Molecular Cloud, lying about 430 light years away. Within it are stars at the earliest stages of their lifespan. The variable stars R and TY Coronae Australis light up parts of the nebula, which varies in brightness accordingly. Corona Australis is bordered by Sagittarius to the north, Scorpius to the west, Telescopium to the south, and Ara to the southwest. The three-letter abbreviation for the constellation, as adopted by the International Astronomical Union in 1922, is 'CrA'. -
THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 141 — 1 June 2016 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 141st issue of the Magellanic Clouds Newsletter. There is a lot of interest in massive stars, star clusters, supernova remnants and binaries, but also several exciting new results about the large-scale structure of the Magellanic Clouds System. The next issue is planned to be distributed on the 1st of August 2016. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers Non-radial pulsation in first overtone Cepheids of the Small Magellanic Cloud R. Smolec1 and M. Sniegowska´ 2 1Nicolaus Copernicus Astronomical Center, Warsaw, Poland 2Warsaw University Observatory, Warsaw, Poland We analyse photometry for 138 first overtone Cepheids from the Small Magellanic Cloud, in which Optical Gravitational Lensing Experiment team discovered additional variability with period shorter than first overtone period, and period ratios in the (0.60,0.65) range. In the Petersen diagram, these stars form three well-separated sequences. The additional variability cannot correspond to other radial mode. This form of pulsation is still puzzling. We find that amplitude of the additional variability is small, typically 2–4 per cent of the first overtone amplitude, which corresponds to 2–5 mmag. In some stars, we find simultaneously two close periodicities corresponding to two sequences in the Petersen diagram. The most important finding is the detection of power excess at half the frequency of the additional variability (at subharmonic) in 35 per cent of the analysed stars. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Stellar Rotation the Missing Piece in Stellar Physics
Stellar rotation the missing piece in Stellar physics Collaborators: Richard de Grijs (MQ), Licai Deng (NAOC), Chengyuan Li (SYSU), Michael Albrow (UC), Petri Vaisanen (SAAO), Zara Randriamanakoto (SAAO) Weijia Sun (PKU) 07/14/2021 Why stellar rotation is important? Why stellar rotation is important? • Dynamo-driven magnetic activity • Stellar winds • Surface abundances • Chemical yields • Internal structure • External structure Why stellar rotation is important? • Dynamo-driven magnetic activity • Stellar winds • Surface abundances • Chemical yields • Internal structure • External structure Matt & Pudritz 2005 Why stellar rotation is important? • Dynamo-driven magnetic activity • Stellar winds • Surface abundances • Chemical yields • Internal structure • External structure Maeder & Meynet 2011 Why stellar rotation is important? • Dynamo-driven magnetic activity • Stellar winds • Surface abundances • Chemical yields • Internal structure • External structure Rivinius+2013 extended MSTO and split MS Found in Magellanic Clouds clusters rMS bMS NGC 1846 NGC 1856 1.5 Gyr 350 Myr Mackey et al. 2008 Milone et al. 2015 Not only in MC clusters Niederhofer et al. 2015 But also in Galactic OCs Pattern NGC 5822 0.9 Gyr Sun et al. 2019a Cordoni et al. 2018 What causes eMSTO and split MS? • Extended star formation history (eSFH) • Variability • A wide range of stellar rotations What causes eMSTO and split MS? Stellar rotation 300 0.0 250 Gravity darkening 0.5 1.0 200 (mag) 1.5 150 G M 2.0 100 2.5 50 pole-on (i = 0) 3.0 0.2 0.4 0.6 G G (mag) BP ° RP edge-on (i = 90) It’s mainly v sin i that affects the locus of a star in the CMD Georgy et al. -
Resolved Massive Cluster Formation at Low and High Redshift Nate Bastian (Liverpool JMU) Stellar Clusters
Resolved Massive Cluster Formation at Low and High Redshift Nate Bastian (Liverpool JMU) Stellar Clusters Type Age Mass Found where star- Open 0 - (3-10) Gyr 100 - 104 Mo formation is happening where star- Young Massive <100 Myr or > 104 Mo formation is Clusters (YMCs) 0 - (1-10) Gyr happening >10 Gyr or Globular > 104 Mo bulge/halo >6 Gyr Nuclear all ages > 105 Mo nucleus Stellar Clusters Type Age Mass Found where star- Open 0 - (3-10) Gyr 100 - 104 Mo formation is happening where star- Young Massive <100 Myr or > 104 Mo formation is Clusters (YMCs) 0 - (1-10) Gyr happening >10 Gyr or Globular > 104 Mo bulge/halo >6 Gyr Nuclear all ages > 105 Mo nucleus Stellar Clusters Type Age Mass Found where star- Open 0 - (3-10) Gyr 100 - 104 Mo formation is happening where star- Young Massive <100 Myr or > 104 Mo formation is Clusters (YMCs) 0 - (1-10) Gyr happening >10 Gyr or Globular > 104 Mo bulge/halo >6 Gyr Nuclear all ages > 105 Mo nucleus Stellar Clusters Type Age Mass Found where star- Open 0 - (3-10) Gyr 100 - 104 Mo formation is happening where star- Young Massive <100 Myr or > 104 Mo formation is Clusters (YMCs) 0 - (1-10) Gyr happening >10 Gyr or Globular > 104 Mo bulge/halo >6 Gyr see recent review by Neumeyer, Seth and Nuclear all ages > 105 Mo nucleus Boeker ARA&A Stellar Clusters Type Age Mass Found where star- Open 0 - (3-10) Gyr 100 - 104 Mo formation is happening where star- Young Massive <100 Myr or > 104 Mo formation is Clusters (YMCs) 0 - (1-10) Gyr happening >10 Gyr or Globular > 104 Mo bulge/halo >6 Gyr see recent review -
{Download PDF} the New Patterns in the Sky Myths and Legends of The
THE NEW PATTERNS IN THE SKY MYTHS AND LEGENDS OF THE STARS 1ST EDITION PDF, EPUB, EBOOK Julius D Staal | 9780939923045 | | | | | The New Patterns in the Sky Myths and Legends of the Stars 1st edition PDF Book US presidential election Officials eye blockchain technology for November polls. Lloyd, Lucy 11 October Stars of Pegasus. Another ten have the same stars but different names. Volkswagen ID. Archive for History of Exact Sciences. The star pattern that makes up the Big Dipper is technically part of the aforementioned constellation Ursa Major. I was actually very disappointed with this book. I thought it was going to be a book of myths about the constellations, instead it was a book of weirdness by a single author. Retrieved 9 July Lots of intrigue and family arguments and even some underhanded goings on. To identify the constellations, most observers use star charts , which can be found online and in astronomy books. The illustrations are beautiful. GUR "The Bark". Paris It wasn't there at dusk, but would appear prominently just a few hours later. Pegasus is dominated by a roughly square asterism, although one of the stars, Delta Pegasi or Sirrah, is now officially considered to be Alpha Andromedae , part of Andromeda , and is more usually called "Alpheratz". However, the numerous Sumerian names in these catalogues suggest that they built on older, but otherwise unattested, Sumerian traditions of the Early Bronze Age. They also created stories to go along with these star patterns, which became the basis for many of the myths that have passed through centuries by the Greeks, Romans, Polynesians, Indigenous Americans, and members of various African tribes and Asian cultures. -
Arxiv:0905.1328V3
Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud A. Z. Bonanos1,2, D.L. Massa2, M. Sewilo2, D. J. Lennon2, N. Panagia2,3, L. J. Smith2, M. Meixner2, B. L. Babler4, S. Bracker4, M. R. Meade4, K.D. Gordon2, J.L. Hora5, R. Indebetouw6, B. A. Whitney7 ABSTRACT We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric cat- alog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 − 24 µm in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color–magnitude diagrams illustrate that the supergiant B[e], red super- giant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free– free emission among ∼ 900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to 1Giacconi Fellow. 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA; bonanos, massa, sewilo, lennon, panagia, lsmith, meixner, [email protected] 3INAF/Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania, Italy; and Supernova Ltd., arXiv:0905.1328v3 [astro-ph.SR] 11 Aug 2009 VGV #131, Northsound Road, Virgin Gorda, British Virgin Islands. -
Astronomy Observatories
National Optical Astronomy Observatories National Optical Astronomy Observatories Quarterly Report April - June 1990 TABLE OF CONTENTS I. INTRODUCTION 1 II. SCIENTIFIC HIGHLIGHTS 2 A. The Latter-day Brightness Variation of the LMC Supernova 1987A 2 B. The Distance to Virgo and the Age of the Universe: New Data from Planetary Nebulae 2 C. Color Gradients in E Galaxies: Measuring the Galaxy Mass? 3 D. High Frequency Solar Oscillations 3 E. Solar-Stellar Observations 4 F. Solar Atmospheric Motions and Structure 6 G. Spectral and High-Resolution Imaging 7 III. PERSONNEL 8 A. Visiting Scientists 8 B. New Hires 8 C. Terminations 8 D. Change of Status 8 E. Summer Research Assistants 9 IV. INSTRUMENTATION, NEW PROJECTS AND OBSERVATORY ACTIVITIES 10 A. Future Telescope Technology Program (FTT) 10 B. Global Oscillation Network Group (GONG) 11 C. WIYN Project 12 D. Instrumentation Projects 12 E. Observatory Activities 15 V. PROGRAM SUPPORT 17 A. Director's Office 17 B. 8-M Office 18 C. Central Administrative Services 18 D. Central Computer Services 19 E. Central Facilities Operations 19 F. Engineering and Technical Services 19 G. Publications and Information Resources 20 Appendices Appendix A: Telescope Usage Statistics Appendix B: Observational Programs I. INTRODUCTION This quarterly report covers scientific highlights for the period of April - June 1990, as well as personnel changes for the period. Highlights emphasize concluded projects rather than work in progress. The report also discusses new technology for telescopes and instrumentation, GONG, WIYN, instrumentation projects, and observatory activities. The Engineering and Technical Services division now submits reports for the instrumentation projects, with contributions from program scientists, if necessary. -
Astronomy Report Southern Cross Authors Maria Constanza Pavez Gabriela Constanza Rossi Consuelo Alizadeh Ruiz Ana Rojas
Astronomy Report Southern Cross Authors Maria Constanza Pavez Gabriela Constanza Rossi Consuelo Alizadeh Ruiz Ana Rojas (teacher) School Colegio Santa Marta Coquimbo Chile [email protected] Acknowledgements The authors acknowledge the support provided by the Chilean Astronomy Network (RChA, Red Chilena de Astronomía, http://www.rcha.cl) during the production of this work. The Spanish version of this report has been freed to the public domain under the terms of the License RChA. 2003 Object: areas of the Southern Cross and the Fly. Exposure: 30 minutes. Instrument: SMC Pentax-M lens 100 mm. F/2.8. Mount: CG-5 Camera: Pentax K-1000 Film: Kodak Ektachrome 200. Place: La Totorita camping, Mamalluca hill, IV region, Chile. Date: Sunday 10th February 2002, 02:38 h. Processing: Photoshop 5.0. I. Introduction Name: Southern Cross. Astronomical name: Crux. GENITIVE: Crucis. Common name: Southern Cross. This circumpolar constellation (always situated above the horizon) of the South Hemisphere, is located between the Centauri and the Fly constellations, just above the Polar Antarctic Circle and it is crossed by the Milky Way. The Crux is visible the whole year between 25 N and 90 S degrees of latitude, especially at early night from middle autumn and during the whole winter. This is why the Crux is not totally visible to all countries, and among those where it has the best visibility are: Chile, Argentina, Perú, Madagascar, Bolivia, Uruguay, etc. The Southern Cross is the smallest constellation, filling only 68 square degrees in the firmament and covering only the 5% of the biggest one, the Hidra.