(12) Patent Application Publication (10) Pub. No.: US 2013/0253084 A1 Duggal Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2013/0253084 A1 Duggal Et Al US 20130253O84A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253084 A1 Duggal et al. (43) Pub. Date: Sep. 26, 2013 (54) POLYURETHANEELASTOMERS MADE Publication Classification USING MIXTURES OF ALPHATIC DOL CHAIN EXTENDER AND SECONDARY (51) Int. Cl. AMINE C08G 18/08 (2006.01) C08G 18/22 (2006.01) (76) Inventors: Rajat Duggal, Pearland, TX (US); (52) U.S. Cl. Nathan Wilmot, Missouri City, TX CPC ................ C08G 18/08 (2013.01); C08G 18/14 (US); Richard Keaton, Pearland, TX (2013.01); C08G 18/222 (2013.01) (US); Alan K. Schrock, Pensacola USPC .............................. 521/124; 528/73:521/156 Beach, FL (US) (21) Appl. No.: 13/990,488 (57) ABSTRACT (22) PCT Filed: Nov. 16, 2011 Polyurethane elastomers are formed by curing a reaction mixture containing at least one polyisocyanate at least one (86). PCT No.: PCT/US11 f60901 polyol, an aliphatic diol chain extender and a small amount of a secondary amino compound that may have none or one or S371 (c)(1), more hydroxyl groups. The reaction is catalyzed with a metal (2), (4) Date: May 30, 2013 catalyst. In certain embodiments, the catalyst is an organozir conium, organotitanium or tertiary amine-based catalyst. The Related U.S. Application Data presence of the secondary amine compound in those cases (60) Provisional application No. 61/420,385, filed on Dec. provides for a good Surface appearance and good physical 7, 2010. properties. US 2013/0253084 A1 Sep. 26, 2013 POLYURETHANEELASTOMERS MADE 0010 Unfortunately, few catalysts successfully mimic the USING MIXTURES OF ALPHATIC DOL performance of the organomercury catalysts. Few other cata CHAIN EXTENDER AND SECONDARY lysts provide the reaction profile that is wanted. Among the AMINE few catalysts that provide a reaction profile similar to that of the organomercury catalysts are certain organozirconium, 0001. This application claims priority from U.S. Provi organotitanate and certaintertiary amine catalysts. However, sional Patent Application No. 61/420,385, filed 7 Dec. 2010. when the cast polyurethane system contains a large amount of 0002 This invention relates to a process for making cast chain extender, the cast elastomers made using these catalysts polyurethane elastomers. often exhibit a surface appearance characterized by the pres 0003 Polyurethane elastomers are made by reacting a ence of discrete transparent or translucent regions together high equivalent weight polyol and a chain extender material with discrete opaque regions. Such an appearance is often with a polyisocyanate compound. The starting materials are cosmetically unacceptable to the consumer, again resulting in mixed, usually degassed, and transferred into a mold where a high reject rate. In certain cases the mechanical properties the elastomer is cured, usually with application of heat. Some may also suffer. or all of the high equivalent weight polyol may be pre-reacted 0011. It would be desirable to provide a cast elastomer with the polyisocyanate in a preliminary step to form an process which provides for an acceptable open time followed isocyanate-terminated prepolymer or quasi-prepolymer. by a rapid cure, and which produces an elastomer that has Such a prepolymer is then caused to react with the chain acceptable physical properties and an acceptable Surface extender and optionally a remaining portion of the high appearance. It is also desirable to achieve these results while equivalent weight polyol during the molding step. avoiding the use of mercury-containing catalysts. 0004 Open time is very important in cast elastomer pro 0012. This invention is in one aspect a process for prepar cesses. Once the starting materials are mixed, they must ing a noncellular or microcellular polyurethane elastomer, remain in an uncured, flowable state for up to several minutes comprising 1) forming a reaction mixture containinga) one or to allow the mixture to be degassed (in most cases) and more aliphatic diols having a hydroxyl equivalent weight of transferred into the mold. If the reaction proceeds too quickly, from about 30 to about 100, b) one or more secondary amine the mold may not fill completely and/or flow lines or other compounds having a molecular weight of 200 or less and at defects may appear in the parts. This can lead to high reject least one of c-1) and c-2), wherein c-1) includes one or more rates. organic polyisocyanates having an isocyanate content of at 0005. Once the mold is filled, however, a rapid cure is least 15% by weight and one or more polyols having a wanted to reduce cycle times and maximize mold usage. hydroxyl equivalent weight of at least 250 and c-2) includes 0006 Polyurethane cast elastomers can be generally char one or more isocyanate-terminated prepolymers or quasi acterized into polyurethane types and polyurethane-urea prepolymers having an isocyanate content of less than 15% types. The difference between the two types relates to the type formed in a reaction of an organic polyisocyanate with one or of chain extender that is used to produce the elastomer. The more polyols having a hydroxyl equivalent weight of at least polyurethane types are made using a diol chain extender, 250 and 2) curing the reaction mixture in the presence of a whereas the polyurethane-urea types are made using a catalyst to form the polyurethane elastomer, wherein: diamine chain extender. Most diamine chain extenders are 0013 A) the reaction mixture contains no more than much more reactive towards isocyanates than are diol chain 0.25% by weight of a chemical blowing agent; extenders. Most diamine-extended systems tend to have open 0014 B) the secondary amine compound contains from times which are too short for the cast elastomer process. Some one to four secondary amino groups, is devoid of primary diamines like methylene bis(2-chloroaniline) provide for amino groups, and contains from Zero to three hydroxyl long open times, but worker exposure issues relating to meth groups, provided that the combined number of secondary ylene bis(2-chloroaniline) make it an undesirable choice. In amino groups and hydroxyl groups is from one to four, addition, the properties of polyurethane-urea elastomers 0015. 3) the weight ratio of componenta) to component b) often cannot match those of polyurethane elastomers. is from 60:40 to 95:5; 0007 Organomercury compounds are often the catalysts 0016 4) the hard segment content of the polyurethane of choice for cast elastomer processes. Organomercury cata elastomer is from 30 to 60% by weight; and lysts offer an important combination of attributes, which are (0017. 5) the isocyanate index is from 70 to 125. extremely difficult to duplicate with other catalyst systems. 0018. A “noncellular elastomer is essentially devoid of These organomercury catalysts provide a very desirable cur cells or other voids produced by gasses present during the ing profile in which a long open time is followed by a rapid curing step. A noncellular elastomer typically has a bulk cure. A second attribute of organomercury catalysts is that density of at least 0.9 g/cc and/or a void volume of 5% or less. they produce polyurethane elastomers that have very desir A“microcellular elastomer, for purposes of this invention, is able physical and mechanical properties. produced by conducting the curing step in the presence of a 0008. A third attribute of organomercury catalysts relates Small amount of blowing agent. A "microcellular elastomer to the appearance of the finished polyurethane product. Orga has a bulk density of at least 0.4 g/cc, and more typically has nomercury catalysts tend to produce elastomers that have a a bulk density of from 0.5 to 0.9 g/cc, and/or avoid volume of highly uniform surface appearance, even when the polyure from 5 to 60%. thane system contains large amounts of chain extender. 0019. The physical properties of elastomers produced in 0009. It is desirable to find a replacement for organomer accordance with this invention tend to approximate those that cury catalysts. Such a replacement catalyst system ideally are exhibited by otherwise like polyurethane elastomers hav would provide the attributes of organomercury catalysts, ing the same hard segment content, but which are made with including a desirable cure profile, good property development out the secondary amine compound (component b). Surpris in the product, and good surface appearance. ingly, these elastomers also exhibit a highly uniform Surface US 2013/0253084 A1 Sep. 26, 2013 appearance, with few if any transparent or translucent regions up to 4, carbon atoms. The aryland/or alkyl groups of these interspersed among opaque regions. This desirable Surface compounds may be substituted as described with respect to appearance is even seen when no organomercury catalysts are the dialkyl amines. present in the reaction system. Elastomers having good Sur 0025 Alicyclic compounds that contain one or more sec face appearance can be produced even when organozirco ondary nitrogen atoms in the ring structure are also useful. nium, organotitanate or tertiary amine catalysts are used These include, for example, piperidine, morpholine, pipera instead of organomercury catalysts. Zine and the like. The carbonatoms on the ring structure may 0020 Component a) is one or more aliphatic diols that be substituted as described before. have a hydroxyl equivalent weight of from 30 to about 100, 0026 Dialkanolamines such as diethanolamine and diiso preferably from 31 to 60. Materials of this type are commonly propanolamine are also useful component b) materials. Simi known as “chain extenders’. By “aliphatic diol, it is meant a larly, the reaction product of a diamine Such as ethylene compound having exactly two hydroxyl groups, each of diamine with about three moles of an alkylene oxide such as which is bound to an aliphatic (or cycloaliphatic) carbon ethylene oxide and/or propylene oxide per mole of diamine atom.
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • Construction and Validation of a Gc-Icp-Ms Instrument for the Analysis of Organometals and Other Trace Element Species
    CONSTRUCTION AND VALIDATION OF A GC-ICP-MS INSTRUMENT FOR THE ANALYSIS OF ORGANOMETALS AND OTHER TRACE ELEMENT SPECIES ALEXANDER WALTER KIM B.Sc. (Hons.)/ M.Sc, C.Chem., M.R.S.C Submitted to the University of Plymouth in partial fulfilment for the degree of: DOCTOR OF PHILOSOPHY Conducted at: Department of Environmental Sciences, University of Plymouth, Drake Circus, Devon. PL4 8AA. GREAT BRITAIN. Funding Institute: Natural Environment Research Council Sponsoring Establishment: British Petroleum pic. September 1993 REFERENCE ONLY 90 0168290 7 | HH|jj|| jjjjj UNIVERSITY OF PLYMOUTH LIBRARY SERVICES Item No. 1682907 Class No. ContI No. L!3RAR Y STORE ABSTRACT Construction and Validation of a GC-ICP-MS Instrument for the Analysis of Organometals and other Trace Element Species. by Alexander Halter Kim A capillary gas chromatography - inductively coupled plasma - mass spectrometry (GC-ICP-MS) method has been successfully developed for the separation and determination for a range of environmenta1ly important organometa11ic species and metal complexes. The coupled technique gave reliable quantitative and qualitative chemical speciation information, providing detection limits in the low pg s' range, Gaussian peak shapes, good linear response, high chromatographic resolution, high signal to noise ratio and few polyatomic interferences. The study involved the construction of progressively improved transfer lines and ICP torch designs. The final transfer line design which enabled a direct interface of the GC to the ICP-MS was of simple construction, strong, inexpensive, required a relatively short installation time (2 hours) and was capable of operation over a large temperature range (ambient to 550**C) . To enable ease of installation the ICP-MS was modified by removing a panel from the hood and torch box, through which the transfer line could pass.
    [Show full text]
  • Ricard Solà Mestres
    Greener Approaches for Chemical Synthesis – Ball Mill and Microwave Assisted Synthesis of Fluoxetine and Duloxetine and Enantioselective Catalysed Addition of Organometallic Reagents to Aldehydes Ricard Solà Mestres Doctor of Philosophy (PhD) Division of Chemistry & Environmental Science School of Science and the Environment Manchester Metropolitan University 2017 Division of Chemistry & Environmental Science School of Science and the Environment Manchester Metropolitan University Greener approaches for chemical synthesis – ball mill and microwave assisted synthesis of fluoxetine and duloxetine and enantioselective catalysed addition of organometallic reagents to aldehydes Ricard Solà Mestres A thesis submitted in partial fulfilment of the requirements of the Manchester Metropolitan University for the degree of Doctor of Philosophy Manchester, May 2017 ACKNOWLEDGEMENTS I would like to start thanking my Director of Studies, Dr. Beatriz Maciá-Ruiz, for giving me the opportunity to carry out this exciting and challenging project. Not only I have been working on what I love for the last three years, but also I had the opportunity to grow both personally and professionally, get to know this beautiful country and meet a lot of interesting people that have made a great impact to my life. Thank you for the support and the guideance and I wish you all the happiness to you, Gareth and Evan. I also want to thank Dr. Marloes Peeters, for all the help and suggestions on the polymer project. A big thank you to all the technicians from the 6th and 7th floors that have always found some free time to help me and sort out any technical problem with a smile on their faces, especially to Lee, Bill, Allan and Helen.
    [Show full text]
  • Gmelin Catalog
    GMELIN Complete Catalog 1997/98 Page Contents Recent Issues 1995/1997 1 Recent Issues 1995/1997 Au Gold Supplement Volume B3 1 Next volumes to appear 1997/98 Gold Supplement Volume B4 2 Reference Table B Boron Compounds, Fourth Supplement 3 Introduction and Explanatory Material Volume lb 4 TYPIX Be Beryllium Supplement Volume B4 5 Alphabetical Index covering all volumes published up Perfluorohalogenoorgano Compounds of to January 1997 F Main Group Elements Second Supple. V. 2 60 Index Volumes Organoiron Compounds Part A11 Facsimile reprint of the First Edition, 1817-1819 Fe GABCOM & GABMET Ga Gallium Supplement Volume C2 Gallium Supplement Volume D2 Gallium Supplement Volume D3 Ge Organogermanium Compounds Part 6 Mn Manganese Volume A3a Manganese Volume A5a Manganese Volume A5bl Mo Molybdenum Supplement Volume B8 Organomolybdenum Compounds Part 10 Organomolybdenum Compounds Part 11 Organomolybdenum Compounds Part 13 N Nitrogen Supplement Volume B6 Ni Organonickel Compounds, First Supplement Part 3 Os Organoosmium Compounds Part B4a Organoosmium Compounds Part B8 Organoosmium Compounds Part B9 P Phosphorus Supplement Volume C2 Phosphorus Supplement Volume C5a Pb Organolead Compounds Part 4 Organolead Compounds Part 5 Re Organorhenium Compounds Part 4 Organorhenium Compounds Part 7 Please note S Sulfur-Nitrogen Compounds Part 11 Every volume or section of the Gmelin Handbook can be Sc,Y, Rare Earth Elements Volume C12a purchased separately. Orders are accepted for volumes which La-Lu Rare Earth Elements Volume E2a are still in preparation. Standing orders for groups of related Si Silicon Supplement Volume B5bl volumes can also be arranged. Please ask for special terms Silicon Supplement Volume B5dl when you order a complete set.
    [Show full text]
  • Curable Organopolysiloxane Composition with Initial and Durable Adherence
    Europaisches Patentamt J European Patent Office © Publication number: 0 596 534 A2 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 93118070.7 © Int. CI.5: C08L 83/07, //(C08L83/07, 83:05,83:07) @ Date of filing: 05.11.93 ® Priority: 05.11.92 JP 321225/92 © Applicant: Dow Corning Toray Silicone Co., Ltd. @ Date of publication of application: 3-16, Nihombashi-muromachi 2-chome 11.05.94 Bulletin 94/19 Chuo-ku, Tokyo(JP) © Designated Contracting States: @ Inventor: Kasuya, Akira c/o Dow Corning DE FR GB IT Toray Sil.Comp.Ltd. 2-2, Chigusa Kaigan, Ichihara-shi Ciba Prefecture(JP) Inventor: Mine, Katsutoshi c/o Dow Corning Toray Sil.Com.Ltd 2-2, Chigusa Kaigan, Ichihara-shi Ciba Prefecture(JP) Inventor: Yamakawa, Kimio c/o Dow Corning Toray Sil.Com.Ltd 2-2, Chigusa Kaigan, Ichihara-shi Ciba Prefecture(JP) © Representative: Sternagel, Hans-Gunther, Dr. Patentanwalte Dr. Michael Hann, Dr. H.-G. Sternagel, Dr. H. Domes, Sander Aue 30 D-51465 Bergisch Gladbach (DE) © Curable organopolysiloxane composition with initial and durable adherence. CM © A curable organopolysiloxane composition which exhibits adhesion to various substrates both initially and ^ after exposure to high temperatures and high humidity over extended periods of time is obtained by mixing a polyorganosiloxane having at least two alkenyl groups, an organopolysiloxane having at least two silicon-bonded COpi hydrogen atoms, an organosilicon compound having 1 to 20 mole% organosilsesquioxane units, 20 to 80 mole% Iff diorganosiloxane units and 20 to 80 mole% triorganosiloxy units in which there is at least one epoxy group per molecule, at least 2 mole percent of the organic groups are alkenyl, and at least 5 mole percent of the organic q) groups are silicon-bonded alkoxy groups, an organotitanium compound, and a hydrosilylation-reaction catalyst.
    [Show full text]
  • Polyurethane Composition
    (19) TZZ ZZ_T (11) EP 2 208 760 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 21.07.2010 Bulletin 2010/29 C08L 75/14 (2006.01) B32B 27/40 (2006.01) C08G 18/67 (2006.01) C08K 3/10 (2006.01) (2006.01) (2006.01) (21) Application number: 08844422.9 C08K 3/32 C08K 5/13 C09D 11/10 (2006.01) (22) Date of filing: 23.10.2008 (86) International application number: PCT/JP2008/069194 (87) International publication number: WO 2009/057497 (07.05.2009 Gazette 2009/19) (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • SAITO, Hidekazu HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Kamisu-shi RO SE SI SK TR Ibaraki 314-0197 (JP) Designated Extension States: • KIMURA, Hiroki AL BA MK RS Kamisu-shi Ibaraki 314-0197 (JP) (30) Priority: 01.11.2007 JP 2007285464 (74) Representative: Müller-Boré & Partner (71) Applicant: Kuraray Co., Ltd. Patentanwälte Kurashiki-shi Grafinger Strasse 2 Okayama 710-0801 (JP) 81671 München (DE) (54) POLYURETHANE COMPOSITION (57) [Problem] Provided are a nonadhesive poly- wherein R1 and R2 are each a hydrogen atom or a C1-6 urethane composition, which does not adhere to a mold- alkyl group, in a proportion of 0.1 - 20 mass%, and metal ing apparatus and the like, is superior in melt-moldability compound (B) selected from an organic Zn compound, and adhesion to silicone, and useful as a molded object, an organic Bi compound, an organic Ti compound and a composite molded object or an ink binder, and a molded an organic Zr compound in a proportion of 0.1 - 2,000 object, a composite molded object, an ink binder and an ppm, a molded object comprised of the polyurethane ink composition, which are made therefrom.
    [Show full text]
  • Zouchoune, B. ELECTRONIC STRUCTURE and RELATIVE STABILITIES of 10-AND 12-VERTEX
    NBO 2018 – 1969 references Updated by Ariel Andrea on 2019-04-05 Ababsa, S.; Zouchoune, B. ELECTRONIC STRUCTURE AND RELATIVE STABILITIES OF 10-AND 12-VERTEX. CLOSO- AND NIDO- HETEROBORANE CLUSTERS OF Ga, Ge, AND As ELEMENTS Journal of Structural Chemistry, (59): 276-289. 2018. 10.1134/s002247661802004x Abbasi, A.; Sardroodi, J. J. A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: A DFT plus NBO analysis Surface Science, (668): 150-163. 2018. 10.1016/j.susc.2017.10.029 Abbasi, A.; Sardroodi, J. J. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices Applied Surface Science, (436): 27-41. 2018. 10.1016/apsusc.2017.12.010 Abbenseth, J.; Bete, S. C.; Finger, M.; Volkmann, C.; Wurtele, C.; Schneider, S. Four- and Five-Coordinate Osmium(IV) Nitrides and Imides: Circumventing the "Nitrido Wall" Organometallics, (37): 802-811. 2018. 10.1021/acs.organomet.7b00707 Abdel-Latif, S. A.; Mohamed, A. A. Novel Zn(II) complexes of 1,3-diphenyl-4-(arylazo)pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties Journal of Molecular Structure, (1156): 712-725. 2018. 10.1016/j.molstruc.2017.12.028 Abdel-Latif, S. A.; Mohamed, A. A. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5- pyrazolone ligand Journal of Molecular Structure, (1153): 248-261. 2018. 10.1016/j.molstruc.2017.10.002 Abdel-Latif, S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,511,774 B1 Tsukuda Et Al
    USOO6511774B1 (12) United States Patent (10) Patent No.: US 6,511,774 B1 Tsukuda et al. (45) Date of Patent: *Jan. 28, 2003 (54) SEPARATOR FOR NONAQUEOUS 5,736.465 A * 4/1998 Stahl et al. ................. 428/298 ELECTROLYTE BATTERIES, NONAQUEOUS 5,962,161 A * 10/1999 Zucker ....................... 429/142 ELECTROLYTE BATTERY USING IT, AND METHOD FOR MANUFACTURING FOREIGN PATENT DOCUMENTS SEPARATOR FOR NONAQUEOUS JP 57-80670 5/1982 ELECTROLYTE BATTERIES JP 59-447SO 10/1984 JP 63-102161 5/1988 (75) Inventors: Takahiro Tsukuda, Tokyo (JP); JP 63-175350 7/1988 Haruyoshi Funae, Tokyo (JP) JP 63-25718O 10/1988 JP 1-304933 12/1989 (73) ASSignee: MishO O Paper Mills Limited, JP O1-3049333-124865 12/19895/1991 y JP 5-151949 6/1993 (*) Notice: This patent issued on a continued pros- E. g: E. ecution application filed under 37 CFR JP 7-302584 11/1995 1.53(d), and is subject to the twenty year JP 8-111214 4/1996 patent term provisions of 35 U.S.C. JP 9-213296 8/1997 154(a)(2). JP 63-25718O 10/1998 Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 Primary Examiner Stephen Kalafut U.S.C. 154(b) by 0 days. Assistant Examiner R Alejandro (21) Appl. No.: 09/142,690 (74) Attorney, Agent, or Firm-Paul E. White, Jr.; Manelli Denison & Selter PLLC (22) PCT Filed: Jan. 14, 1998 (57) ABSTRACT (86) PCT No.: PCT/JP98/00113 The present invention provides a separator for non-aqueous S371 (c)(1), electrolyte batteries which neither breaks nor slips off at the (2), (4) Date: Sep.
    [Show full text]
  • © 2020 Brian B. Trinh
    © 2020 Brian B. Trinh LOW-TEMPERATURE PROTONATION STUDIES OF TRANSITION METAL ALKYL COMPLEXES AND THE SYNTHESIS AND CHARACTERIZATION OF EARLY TRANSITION METAL PCP PINCER COMPLEXES AND TWO-COORDINATE ALKYLAMIDO COMPLEXES BY BRIAN B. TRINH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Professor Gregory S. Girolami, Chair Professor Martin D. Burke Associate Professor Alison R. Fout Professor Thomas B. Rauchfuss ABSTRACT We recently reported NMR studies of an osmium alkane complex, + [Cp*Os(DFMPM)(CH4)] , where Cp* is pentamethylcyclopentadienyl and DFMPM is bis(bis(trifluoromethyl)phosphino)methane. As part of an effort to continue these studies, the procedures to synthesize the DFMPM ligand and the Cp*Os(DFMPM)Br intermediate have been improved. A laboratory-scale procedure was developed to synthesize diethylzinc in which the α- CH2 positions are isotopically labeled with carbon-13 and/or deuterium; these reagents were then employed to synthesize isotopically labeled analogs of Cp*Os(DFMPM)Et. Protonation of Cp*Os(DFMPM)Et with HOTf in CDCl2F at -130 °C affords the alkane complex [Cp*Os(DFMPM)(CH3CH3)][OTf]. The dissociation of the ethane ligand follows first- order kinetics characterized by activation parameters of ΔH‡ = 14.4 ± 4.2 kcal/mol and ΔS‡ = 7 ± 20 cal mol-1 K-1. These values are within error for those of the methane analog, ΔH‡ = 14.9 ± 1.5 kcal/mol and ΔS‡ = 12.3 ± 8.8 cal mol-1 K-1.
    [Show full text]
  • United States Patent Office Patented Jan
    2,870,181 United States Patent Office Patented Jan. 20, 1959 2 cipitates immediately. The precipitated product is fil 2,870,181. tered and washed with a suitable solvent and dried. The organic titanium products of this invention are WATER SOLUBLE ORGANOTITANIUM COM. white, amorphous substances which are quite soluble in POUNDS AND PROCESS OF PREPARATION 5 water and in aqueous methanol, ethanol and other water Comer Drake Shacklett, Roselle, N.J., assignor to E. I. soluble alcohols. The analyses of these substances indi du Pont de Nemours and Company, Wilmington, Del, cate that they contain alkyl groups from the tetraalkyl a corporation of Delaware itanates, as well as residues from the hydroxyl-substituted No Drawing. Application February 17, 1954 acids. They are polymeric substances, i. e., they con Serial No. 411,020 O tain more than one atom of titanium per molecule. Their structure is not known, but due to the hexa-coval 16 Claims. (C. 260-429.5) eacy of titanium are believed to be complex condensation products. The products are soluble in water to the extent This invention relates to chemical compounds and more of 500 to 600 grams per liter of solution. They are also particularly to water-soluble titanium compounds which 15 soluble in acid solutions of pH 4 to 7 and in basic solu are stable in neutral, weakly, acidic and alkaline aqueous tions of pH 7 to 8, to about the same extent. solutions. Still more particularly it relates to polymeric The invention will be further understood, but is not organic titanium-containing compounds.
    [Show full text]
  • Syllabus for Mphil and Phd in Chemistry
    1 DEPARTMENT OF CHEMISTRY JAHANGIRNAGAR UNIVERSITY SAVAR, DHAKA. Curriculum/Syllabus for M.Phil/Ph.D in Chemistry SESSION: 2017-2018, 2018-2019, 2019-2020, 2020-2021 The admission to M.Phil/Ph.D course in chemistry will be in accordance with the ordinance for the degree of master of philosophy of this university. A student admitted to M.Phil/Ph.D course will have to undertake two years full time supervised study in the department under the guidance of a supervisor/supervisors. The department will offer courses of specialization in selected branches of chemistry e.g., Physical, Inorganic, Organic etc. and the degree of M.Phil/Ph.D shall consist of (a) written examination on approved courses, (b) submission of a thesis on an approved topic and (c) an oral examination. The department will offer a number of courses in the first year from which a student will have to take courses covering 200 marks, which will be determined by the respective supervisor/supervisors. There will be an examination on the approved courses at the end of the first year, the pass marks for the courses will be 50%. The M.Phil. students will be required to carry out research on approved topics both in the first and second year and give a minimum of two seminars on topics in his field of research and approved by the supervisor and the full time Ph.D. students will be required to carry out research on specific approved topic for at least 3 years while the minimum research period for part time Ph.D.
    [Show full text]
  • Inorganic Chemistry
    INORGANIC CHEMISTRY Organometallics Prof. Tarlok S. Lobana Department of Chemistry Guru Nanak Dev University Amritsar 143005 (19.06.2006) CONTENTS Introduction Historical Background Classification of Organometallic Compounds Properties Nomenclature Organometallic Compounds of Lithium Organometallic Compounds of Aluminium Organometallic Compounds of Mercury Organometallic Compounds of Tin Organometallic Compounds of Titanium Applications Metal-Alkene Complexes Metal Carbonyls Homogeneous Hydrogenation Keywords Organolithium, organoaluminium, organomercury, organotin and organotitanium, metal-alkene, metal carbonyls, nomenclature 1 Introduction A metal atom can form bonds with one or more carbon atoms (M−C bond) such as M−CH3, 5 5 M−CO, M−CN, M-(η -C5H5) (η -C5H5 = cyclopentadienyl binding via its π-electrons) and so on. An organometallic compound is defined as one which contains at least one metal−carbon bond. The carbon compounds of boron, arsenic, silicon and germanium (metalloids) are also considered as organometallic compounds, excluding those of phosphorus (P−C) and more electronegative elements. Traditionally metal carbonyls are considered as organometallic compounds, while metal-cyanides and metal-carbides as inorganic compounds. The organometallic compounds have Mδ+− Cδ- bond polarity, which make them different from organic compounds. The organic compounds have Mδ-− Cδ+ bond polarity in which carbon is at the positive end of bonds to nonmetallic elements (M = O, N, F, Cl, Br). The bond polarity δ+ δ- (M − C ) of organometallic compounds such as metal alkyls and aryls, MRn, makes R group carbanionic and susceptible to attack by electrophiles (affinity for negative center). The metal center on the other hand, which generally has vacant orbitals, is susceptible to attack by nucleophiles (affinity for positive center).
    [Show full text]