Mathematics Standards Review and Revision Committee
Total Page:16
File Type:pdf, Size:1020Kb
Proposed for SBE Adoption – 2019-12-31 – Page 1 Mathematics Standards Review and Revision Committee Chairperson Joanie Funderburk President Colorado Council of Teachers of Mathematics Members Lisa Bejarano Lanny Hass Teacher Principal Aspen Valley High School Thompson Valley High School Academy District 20 Thompson School District Michael Brom Ken Jensen Assessment and Accountability Teacher on Mathematics Instructional Coach Special Assignment Aurora Public Schools Lewis-Palmer School District 38 Lisa Rogers Ann Conaway Student Achievement Coordinator Teacher Fountain-Fort Carson School District 8 Palisade High School Mesa County Valley School District 51 David Sawtelle K-12 Mathematics Specialist Dennis DeBay Colorado Springs School District 11 Mathematics Education Faculty University of Colorado Denver T. Vail Shoultz-McCole Early Childhood Program Director Greg George Colorado Mesa University K-12 Mathematics Coordinator St. Vrain Valley School District Ann Summers K-12 Mathematics and Intervention Specialist Cassie Harrelson Littleton Public Schools Director of Professional Practice Colorado Education Association This document was updated in December 2019 to reflect typographic and other corrections made to Standards Online. State Board of Education and Colorado Department of Education Colorado State Board of Education CDE Standards and Instructional Support Office Angelika Schroeder (D, Chair) 2nd Congressional District Karol Gates Boulder Director Joyce Rankin (R, Vice Chair) Carla Aguilar, Ph.D. 3rd Congressional District Music Content Specialist Carbondale Ariana Antonio Steve Durham (R) Standards Project Manager 5th Congressional District Colorado Springs Joanna Bruno, Ph.D. Science Content Specialist Valentina (Val) Flores (D) 1st Congressional District Lourdes (Lulu) Buck Denver World Languages Content Specialist Jane Goff (D) Donna Goodwin, Ph.D. 7th Congressional District Visual Arts Content Specialist Arvada Stephanie Hartman, Ph.D. Rebecca McClellan (D) Social Studies Content Specialist 6th Congressional District Centennial Judi Hofmeister Dance Content Specialist Debora Scheffel (R) Drama and Theatre Arts Content Specialist 4th Congressional District Parker Jamie Hurley, Ph.D. Comprehensive Health Content Specialist Colorado Department of Education Physical Education Content Specialist Katy Anthes, Ph.D. Raymond Johnson Commissioner of Education Mathematics Content Specialist Secretary to the Board of Education Christine Liebe Melissa Colsman, Ph.D. Computer Science Content Specialist Associate Commissioner of Education Student Learning Division Vince Puzick Reading, Writing, and Communicating Content Floyd Cobb, Ph.D. Specialist Executive Director Teaching and Learning Unit 2020 Colorado Academic Standards Page 3 Purpose of Mathematics “Pure mathematics is, in its way, the poetry of logical ideas.” ~Albert Einstein, Obituary for Emmy Noether (1935) “Systematization is a great virtue of mathematics, and if possible, the student has to learn this virtue, too. But then I mean the activity of systematizing, not its result. Its result is a system, a beautiful closed system, closed with no entrance and no exit. In its highest perfection it can even be handled by a machine. But for what can be performed by machines, we need no humans. What humans have to learn is not mathematics as a closed system, but rather as an activity, the process of mathematizing reality and if possible even that of mathematizing mathematics.” ~Hans Freudenthal, Why to Teach Mathematics So as to Be Useful (1968) Mathematics is the human activity of reasoning with number and shape, in concert with the logical and symbolic artifacts that people develop and apply in their mathematical activity. The National Council of Teachers of Mathematics (2018) outlines three primary purposes for learning mathematics: 1. To Expand Professional Opportunity. Just as the ability to read and write was critical for workers when the early 20th century economy shifted from agriculture to manufacturing, the ability to do mathematics is critical for workers in the 21st-century as the economy has shifted from manufacturing to information technology. Workers with a robust understanding of mathematics are in demand by employers, and job growth in STEM (science, technology, engineering, and mathematics) fields is forecast to accelerate over the next decade. 2. Understand and Critique the World. A consequence of living in a technological society is the need to interpret and understand the mathematics behind our social, scientific, commercial, and political systems. Much of this mathematics appears in the way of statistics, tables, and graphs, but this need to understand and critique the world extends to the application of mathematical models, attention given to precision, bias in data collection, and the soundness of mathematical claims and arguments. Learners of mathematics should feel empowered to make sense of the world around them and to better participate as an informed member of a democratic society. 3. Experience Wonder, Joy, and Beauty. Just as human forms and movement can be beautiful in dance, or sounds can make beautiful music, the patterns, shapes, and reasoning of mathematics can also be beautiful. On a personal level, mathematical problem solving can be an authentic act of individual creativity, while on a societal level, mathematics both informs and is informed by the culture of those who use and develop it, just as art or language is used and developed. References National Council of Teachers of Mathematics (2018). Catalyzing change in high school mathematics: Initiating critical conversations. Reston, VA: National Council of Teachers of Mathematics. 2020 Colorado Academic Standards Page 4 Prepared Graduates in Mathematics Prepared graduates in mathematics are described by the eight Standards for Mathematical Practice described in the Common Core State Standards (CCSSI, 2010). Across the curriculum at every grade, students are expected to consistently have opportunities to engage in each of the eight practices. The practices aligned with each Grade Level Expectation in the Colorado Academic Standards represent the strongest potential alignments between content and the practices, and are not meant to exclude students from engaging in the rest of the practices. The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important “processes and proficiencies” with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council’s report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy). Math Practice MP1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Math Practice MP2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative 2020 Colorado Academic Standards Page 5 reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them;