Universit`A Del Salento Rosario Brunetto Space
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITA` DEL SALENTO FACOLTA` DI SCIENZE MM.FF.NN. - DIPARTIMENTO DI FISICA DOTTORATO DI RICERCA IN FISICA - XIX CICLO - FIS/05 ROSARIO BRUNETTO SPACE WEATHERING IN THE SOLAR SYSTEM: FROM LABORATORY TO OBSERVATIONS, THROUGH SPECTRAL MODELS PhD Thesis Tutors: Prof. Vincenzo Oro¯no Prof. Giovanni Strazzulla ANNO ACCADEMICO 2006 - 2007 To Nadia Contents Sommario 1 Abstract 5 Acknowledgments 9 Introduction 11 I The surface of minor bodies 15 1 Surface composition and processing 17 1.1 Tools: observations and models ..................... 19 1.1.1 UV-Vis-IR spectroscopy ..................... 19 1.1.2 Hapke and Shkuratov theories . 20 1.1.3 Results from space missions ................... 21 1.2 Space weathering of silicates ....................... 22 1.2.1 Solar wind and cosmic ions .................... 26 1.2.2 Micrometeorites bombardment . 26 1.3 Ices: chemistry and colors ........................ 29 1.3.1 Chemistry of mixtures ...................... 29 1.3.2 C-rich species ........................... 31 1.3.3 A wide spread of colors ...................... 33 1.4 Bitumens and other organics ....................... 34 1.4.1 The organic crust ......................... 34 i 1.4.2 Tholins .............................. 35 1.4.3 Bitumens ............................. 36 2 Experimental approach 39 2.1 Ion irradiation experiments ........................ 39 2.2 Laser ablation experiments ........................ 44 2.3 How to extrapolate laboratory results . 46 II New experimental results 51 3 Irradiation and ablation of silicates 53 3.1 Ordinary Chondrites: Epinal meteorite . 53 3.1.1 Irradiation and spectroscopy ................... 54 3.1.2 Comparison with NEOs and timescale . 57 3.2 Ion irradiation: the role of elastic collisions . 61 3.2.1 Characterization of the samples . 62 3.2.2 Mechanisms of ion energy loss and damaging . 65 3.2.3 Spectral modi¯cations ...................... 67 3.2.4 Spectral slopes and elastic collisions . 71 3.3 Laser irradiation below and above the ablation threshold . 76 3.3.1 Spectral modi¯cations ...................... 76 3.3.2 Discussion ............................. 81 3.3.3 Astrophysical implications .................... 86 4 Irradiation of ices 91 4.1 Chemistry: the case of methanol ..................... 91 4.1.1 Experimental results ....................... 92 4.1.2 Discussion ............................. 99 4.2 CH3OH, CH4, and C6H6: the organic residue . 102 ii III Space weathering in the Solar System 107 5 Spectral comparisons 109 5.1 The spectral slope of Near Earth and Main Belt Asteroids . 109 5.1.1 Spectra of NEAs and MBAs . 109 5.1.2 A global view on space weathering of silicate-rich asteroids . 115 5.2 S-, C-, and X-complexes: a big picture . 121 5.2.1 Spectral trends in the Main Belt . 124 5.2.2 The big picture . 128 5.3 Irradiation mantles on centaurs and TNOs: ultra-red matter? . 129 5.3.1 Observations of centaurs and TNOs . 130 5.3.2 The irradiation mantle . 132 6 Peculiar objects 137 6.1 Asteroid 832 Karin and its family . 137 6.1.1 Model of the continuum: the CS parameter . 139 6.1.2 Observations and model of 832 Karin . 145 6.1.3 Discussion .............................154 6.1.4 Appendix: the Karin family . 156 6.2 A particular case: asteroid 4 Vesta . 157 6.2.1 Vesta is not red . 157 6.2.2 A magnetic ¯eld? . 160 7 Optical constants 163 7.1 Optical characterization of ablated silicates . 163 7.1.1 Nanophase metallic iron in laser ablation experiments . 164 7.1.2 Characterization of the samples . 166 7.1.3 Optical constants of silicates after UV laser ablation . 174 7.1.4 Other possible scenarios . 180 7.2 Application to minor bodies . 186 7.2.1 Centaur 5145 Pholus: a mixture of silicates and organics . 186 7.2.2 Asteroid 1951 Lick: space weathering to the highest level . 190 iii Conclusions 199 Bibliography 201 iv List of Figures 1.1 Space weathering processes ........................ 19 1.2 OC paradox ................................ 25 1.3 The spectrum of Pholus ......................... 30 1.4 Irradiation of asphaltite ......................... 37 2.1 Scheme of the vacuum chamber ..................... 40 2.2 Electronic to total energy loss ...................... 43 2.3 The amorphization dose vs the displacement energy. 48 2.4 Times to accumulate 100 eV per 16-amu for H2O ice . 49 3.1 Micro-Raman spectra of the Epinal meteorite . 55 3.2 Meteorite Epinal before and after irradiation . 56 3.3 Ratio of the irradiated Epinal spectra. 57 3.4 Spectra of Epinal compared with three NEOs . 58 3.5 Plot of spectral parameters of Epinal and NEOs . 60 3.6 Micro-Raman spectra of Jackson silicates . 63 3.7 Reflectance of Jackson silicates compared with USGS spectra . 64 3.8 Raman spectra of irradiated silicates . 68 3.9 Ex situ spectra of silicates before and after irradiation . 70 3.10 In situ spectra of irradiated silicates ................... 71 3.11 The spectral slope S versus the parameter d . 73 3.12 The spectral slope S versus the elastic and the inelastic collisions . 74 3.13 Clinopyroxene before and after irradiation: below and above ablation 78 3.14 Spectra of olivine before and after ablation . 79 v 3.15 Spectra of orthopyroxene before and after ablation . 80 3.16 Scaled spectra of silicates before and after weathering . 82 3.17 Slope of clinopyroxene vs number of pulses and laser fluence . 83 3.18 Spectral slope vs the total laser dose . 85 3.19 Spectral slope vs the BII/BI area ratio, below and above ablation . 87 4.1 Transmittance spectra of frozen hydrocarbons . 93 4.2 Reflectance spectra of irradiated methanol at T = 16 K . 95 4.3 Reflectance spectra of irradiated methanol at T = 77 K . 96 4.4 Irradiation of a mixture water:methanol . 97 4.5 Decrease of the CH3OH bands area after ion irradiation . 98 4.6 Irradiation of methanol, methane, and benzene . 104 4.7 J-R slope for irradiated methane, benzene, and methanol . 105 5.1 Irradiated Eifel, olivine, and orthopyroxene . 116 5.2 Slope distributions of OCs, NEOs, and MBAs . 117 5.3 Band I peak vs. BII/BI for OCs, NEOs, MBAs, and experiments . 119 5.4 Slope vs. BII/BI for OCs, NEOs, MBAs, and experiments . 120 5.5 Spectral trends for MBAs and comparison with experiments . 126 5.6 Spectra of CC meteorites before and after laser and ion irradiation . 127 5.7 Methanol, methane, and benzene, compared with centaurs and TNOs 131 5.8 K-J slope vs. J-R slope for experimental and observational data . 134 6.1 Summary of irradiated silicates . 140 6.2 Ratio plot for irradiated silicates . 141 2 6.3 The CS parameter vs the number of displacements per cm . 144 6.4 Visible spectrum of Karin . 147 6.5 NIR spectrum of Karin . 148 6.6 Fit of Karin spectra ............................151 6.7 Timescales for Karin . 153 6.8 Irradiated Bereba compared with Vesta and the Moon . 159 7.1 Imaginary index for olivine and pyroxene . 171 vi 7.2 Estimation of grain size for silicates . 172 7.3 Imaginary index from inversion of the Hapke model . 175 7.4 Fit of olivine spectra with metallic iron inclusions . 178 7.5 Fit of orthopyroxene spectra with metallic iron inclusions . 179 7.6 Fit of clinopyroxene spectra with metallic iron inclusions . 181 7.7 Fit of clinopyroxene below ablation, with metallic iron inclusions . 182 7.8 Fit of orthopyroxene spectra with glass inclusions . 184 7.9 Spectral ¯t of Pholus . 188 7.10 Asteroid Lick compared with ablated olivine (1) . 191 7.11 Asteroid Lick compared with ablated olivine (2) . 192 7.12 Fit of Lick spectrum using pristine and ablated olivine . 193 7.13 Fit of Lick spectrum using San Carlos olivine (Hapke SW model) . 194 7.14 Fit of Lick spectrum using Brachina meteorite (Hapke SW model) . 195 7.15 Best ¯t of Lick spectrum . 196 vii viii List of Tables 2.1 Amorphization doses ........................... 47 3.1 Damage parameters for irradiated silicates . 65 4.1 Peak position and FWHM of NIR bands . 94 4.2 σ and A1 for irradiated methanol .................... 99 4.3 Damage parameters for irradiated ices . 103 5.1 Spectral parameters for selected MBAs . 112 5.2 Spectral parameters for selected NEAs . 113 5.3 List of meteorites from RELAB . 114 5.4 Slopes for selected centaurs and TNOs . 132 6.1 Parameters of observations of Karin . 146 6.2 Results of the ¯t of Karin's spectrum . 152 7.1 Grain size distribution for silicates . 173 7.2 Abundances in the spatial mixture ¯t of Pholus spectrum . 187 7.3 Abundances in the intimate mixture ¯t of Pholus spectrum . 189 ix Sommario La gran parte dei corpi del Sistema Solare non possiede atmosfera o campi magnetici; tali corpi sono a volte chiamati \corpi minori", ed includono asteroidi, oggetti Trans-Nettuniani, pianeti nani, comete e satelliti dei pianeti. Le super¯ci dei corpi del Sistema Solare non protetti, o debolmente protetti da atmosfere o campi magnetici, sono costantemente sottoposte all'interazione con micro-meteoriti, con particelle del vento solare e con particelle cariche di pi`ualta energia, di provenienza solare, galattica o magnetosferica (ad es. i satelliti di Giove e Saturno). Tale interazione, nota con il nome di \space weathering", `ecausa di un notevole numero di e®etti. Il bombardamento da parte di micro-impattori causa principalmente: ablazione (con rideposizione di parte del materiale vaporizzato); e®etti termici; creazione di micro-crateri. L'irraggiamento da parte di ioni veloci (impiantazione) causa: variazioni della struttura del bersaglio (ad es. amor¯zzazione); variazione della composizione; erosione della super¯cie. I processi di space weathering portano quindi anche alla variazione delle pro- priet`aottiche dei materiali che compongono la super¯cie dell'oggetto. Essa si ri- flette in una variazione delle propriet`aspettrali, che possono essere studiate me- diante l'osservazione della luce solare riflessa da tali super¯ci.