Les Principaux Astres Du Système Solaire

Total Page:16

File Type:pdf, Size:1020Kb

Les Principaux Astres Du Système Solaire seconde 2009-2010 Les principaux astres du système solaire NB : les corps qui suivent n'étaient pas tous connus des astronomes de l'Antiquité, donc les noms latins et grecs ne sont que des transcriptions modernes. Les planètes et planètes naines sont mises en gras. La distance au Soleil n'est que la moyenne (demi-grand axe) entre l'aphélie et la périhélie ; exemple avec l'orbite de Sedna qui passe en 12 000 ans de 76,057 à 935,451 UA (demi-grand axe : 505,754 UA). Étant donné qu'au printemps 2009 l'Union astronomique internationale dénombrait plus de 450 000 astéroïdes dans notre système, tous ne sont pas présents ci-dessous... Sources : IAU ; Names & discoverers ; Minor Planet Center (Smithsonian). Noms Distances Années de Noms Noms systématiques Symboles au Soleil Noms latins Noms grecs découverte français anglais selon l'IAU (en UA) - 0,000 - Soleil Sol Ήλιος Sun Sol I 0,387 - Mercure Mercvrivs Ερμής Mercury - 0,635 2004 2004 JG6 2004 JG6 Sol II 0,723 - Vénus Venvs Αφροδίτη Venus - 0,723 2002 2002 VE68 2002 VE68 163693 - 0,741 2003 Atira Atira - 0,818 2004 2004 FH 2004 FH 2100 - 0,832 1978 Ra-Shalom Ra-Shalom 2340 - 0,844 1976 Hathor Hathor 99942 - 0,922 2004 Apophis Άποφις Apophis 2062 - 0,967 1976 Aten Aten - 0,997 2003 2003 YN107 2003 YN107 3753 - 0,998 1986 Cruithne Cruithne Sol III 1,000 - Terre Tellvs/Terra Γη/Γαῖα Earth Earth I - - Lune Lvna Σελήνη Moon - 1,000 2002 2002 AA29 2002 AA29 54509 - 1,005 2000 YORP YORP 4581 - 1,022 1989 Asclépios Asclepius 4769 - 1,063 1989 Castalia Castalia 1620 - 1,245 1951 Géographos Geographos 25143 - 1,323 1998 Itokawa Itokawa 433 - 1,458 1898 Éros Eros Eros Sol IV 1,523 - Mars Mars Άρης Mars Mars I - - 1877 Hall Phobos Phobos Φόβος Phobos Mars II - - 1877 Hall Déimos Dimos Δείμος Deimos 5261 - 1,523 1990 Eurêka Eureka 69230 - 1,655 1937 Hermès Hermes 951 - 2,209 1916 Gaspra Gaspra 8 2,201 1847 Hind Flore Χλωρίς Flora 18 - 2,296 1852 Hind Melpomène Μελπομένη Melpomene 12 2,334 1850 Hind Victoria Βικτωρία Victoria 4 2,361 1807 Olbers Vesta Vesta Εστία Vesta 7 2,387 1847 Hind Iris Iris Ίρις Iris 9 2,387 1848 Graham Métis Μήτις Metis 192 - 2,402 1879 Palisa Nausicaa Nausikaa 20 - 2,408 1852 Chacornac Massalia Μασσαλία Massalia 6 2,426 1847 Hencke Hébé Ήβη Hebe 21 - 2,435 1852 Goldschmidt Lutèce Λουτητία Lutetia 19 - 2,441 1852 Hind Fortune Φορτούνα Fortuna 11 2,453 1850 Gasparis Parthénope Παρθενόπη Parthenope 17 - 2,470 1852 Luther Thétis Θέτις Thetis 4179 - 2,522 1989 Toutatis Toutatis 5 2,573 1845 Hencke Astrée Astraea Αστραία Astraea 13 - 2,576 1850 Gasparis Égérie Ηγερία Egeria 14 - 2,585 1851 Hind Irène Ειρήνη Irene 23 - 2,628 1852 Hind Thalie Θάλεια Thalia 253 - 2,646 1885 Palisa Mathilde Mathilde 15 2,646 1851 Gasparis Eunomie Ευνομία Eunomia 3 2,670 1804 Harding Junon Ivno Ήρα Juno 324 - 2,683 1892 Bamberga Bamberga 45 - 2,720 1857 Goldschmidt Eugénie Ευγενία Eugenia (45) Eugenia I - - 1999 Petit-Prince Petit-Prince 1 2,765 1801 Piazzi Cérès Ceres Δήμητρα Ceres 88 - 2,768 1866 Peters Thisbé Thisbe Θίσβη Thisbe 2 2,772 1802 Olbers Pallas Pallas Παλλάς Pallas 243 - 2,861 1884 Ida Ida (243) Ida I - - 1993 Dactyl Dactyl 22 - 2,908 1852 Hind Calliope Καλλιόπη Kalliope 16 - 2,921 1852 Gasparis Psyché Ψυχή Psyche 704 - 3,063 1910 Interamnia Interamnia 52 - 3,100 1858 Goldschmidt Europe Ευρώπη Europa 24 - 3,130 1853 Gasparis Thémis Θέμις Themis 10 3,137 1849 Gasparis Hygie Υγιεία Hygiea 31 - 3,150 1854 Ferguson Euphrosyne Ευφροσύνη Euphrosyne 511 - 3,167 1903 Davida Νταβίντα Davida 65 - 3,434 1861 Tempel Cybèle Κυβέλη Cybele 121 - 3,446 1872 Watson Hermione Hermione 87 - 3,490 1866 Pogson Sylvia Sylvia (87) Sylvia I - - 2001 Romulus Romvlvs Ρωμύλος Romulus (87) Sylvia II - - 2005 Rémus Remvs Ρέμος Remus 659 - 5,187 1908 Nestor Nestor Sol V 5,203 - Jupiter Ivppiter Δίας Jupiter Jupiter I - - 1610 Galilée Io Io Ιώ Io Jupiter II - - 1610 Galilée Europe Europa Ευρώπη Europa Jupiter IV - - 1610 Galilée Callisto Callisto Καλλιστώ Callisto Jupiter III - - 1610 Galilée Ganymède Ganymedes Γανυμήδης Ganymede Jupiter V - - 1892 Amalthée Amalthea Αμάλθεια Amalthea Jupiter VI - - 1905 Himalia Himalia Ιμαλία Himalia Jupiter VII - - 1905 Élara Elara Ελάρα Elara Jupiter VIII - - 1908 Pasiphaé Pasiphae Πασιφάη Pasiphaë Jupiter IX - - 1914 Sinopé Sinope Σινώπη Sinope Jupiter X - - 1938 Lysithéa Lysithea Lysithea Jupiter XI - - 1938 Carmé Carme Carme Jupiter XII - - 1951 Ananké Anance Ananke Jupiter XIII - - 1974 Léda Leda Leda Jupiter XVIII - - 1975 Thémisto Themisto Jupiter XV - - 1979 Adrastée Adrastea Adrastea Jupiter XIV - - 1980 Thébé Thebe Thebe Jupiter XVI - - 1980 Métis Metis Metis Jupiter XVII - - 2000 Callirrhoé Callirrhoe Jupiter XVIII - - 2000 Thémisto Themisto Jupiter XXIII - - 2000 Calycé Kalyke Jupiter XXIV - - 2000 Jocaste Iocaste Jupiter XXV - - 2000 Érinomé Erinome Jupiter XXII - - 2000 Harpalycé Harpalyke Jupiter XXVI - - 2000 Isonoé Isonoe Jupiter XXVII - - 2000 Praxidiké Praxidike Jupiter XIX - - 2000 Mégaclité Megaclite Jupiter XX - - 2000 Taygète Taygete Jupiter XXI - - 2000 Chaldèné Chaldene Jupiter - - 2000 S/2000 J 11 S/2000 J 11 Jupiter XXX - - 2002 Hermippé Hermippe Jupiter XXXII - - 2002 Eurydomé Eurydome Jupiter XXXVI - - 2002 Spondé Sponde Jupiter XXXVII - - 2002 Calé Kale Jupiter XXVIII - - 2002 Autonoé Autonoe Jupiter XXIX - - 2002 Thyoné Thyone Jupiter XXXVIII - - 2002 Pasithée Pasithee Jupiter XXXIII - - 2002 Euanthé Euanthe Jupiter XXXV - - 2002 Orthosie Orthosie Jupiter XXXIV - - 2002 Euporie Euporie Jupiter XXXI - - 2002 Aitné Aitne Jupiter XLIII - - 2002 Arché Arche Jupiter XLVII - - 2003 Eukéladé Eukelade Jupiter - - 2003 S/2003 J 2 S/2003 J 2 Jupiter - - 2003 S/2003 J 3 S/2003 J 3 Jupiter - - 2003 S/2003 J 4 S/2003 J 4 Jupiter - - 2003 S/2003 J 5 S/2003 J 5 Jupiter XLV - - 2003 Hélicé Helike Jupiter XLI - - 2003 Aoédé Aoede Jupiter XXXIX - - 2003 Hégémone Hegemone Jupiter - - 2003 S/2003 J 9 S/2003 J 9 Jupiter - - 2003 S/2003 J 10 S/2003 J 10 Jupiter XLIV - - 2003 Callichore Kallichore Jupiter - - 2003 S/2003 J 12 S/2003 J 12 Jupiter XLVIII - - 2003 Cyllèné Cyllene Jupiter XLIX - - 2003 Coré Kore Jupiter - - 2003 S/2003 J 15 S/2003 J 15 Jupiter - - 2003 S/2003 J 16 S/2003 J 16 Jupiter - - 2003 S/2003 J 17 S/2003 J 17 Jupiter - - 2003 S/2003 J 18 S/2003 J 18 Jupiter - - 2003 S/2003 J 19 S/2003 J 19 Jupiter XLVI - - 2003 Carpo Carpo Jupiter XL - - 2003 Mnémé Mneme Jupiter XLII - - 2004 Thelxinoé Thelxinoe Jupiter - - 2004 S/2003 J 23 S/2003 J 23 3317 - 5,212 1984 Paris Paris 624 - 5,222 1907 Hector Έκτωρ Hektor 1143 - 5,258 1930 Odyssée Odysseus 1173 - 5,315 1930 Anchise Anchises Sol VI 9,537 - Saturne Satvrnvs Κρόνος Saturn Saturn VI - - 1655 Huygens Titan Titan Τιτάνας Titan Saturn VIII - - 1671 Cassini Japet Iapetvs Ιαπετός Iapetus Saturn V - - 1672 Cassini Rhéa Rhea Ρέα Rhea Saturn III - - 1684 Cassini Téthys Tethys Τηθύς Tethys Saturn IV - - 1684 Cassini Dioné Dione Διώνη Dione Saturn II - - 1789 Herschel Encelade Enceladvs Εγκέλαδος Enceladus Saturn I - - 1789 Herschel Mimas Mimas Μίμας Mimas Saturn VII - - 1848 Bond Hypérion Hyperion Υπερίων Hyperion Saturn IX - - 1899 Phœbé Phoebe Φοίβη Phoebe Saturn X - - 1966 Janus Ianvs Janus Saturn XI - - 1966 Épiméthée Epimethevs Epimetheus Saturn XII - - 1980 Hélène Helene Helene Saturn XIII - - 1980 Télesto Telesto Telesto Saturn XIV - - 1980 Calypso Calypso Calypso Saturn XVI - - 1980 Prométhée Promethevs Prometheus Saturn XVII - - 1980 Pandore Pandora Pandora Saturn XV - - 1980 Atlas Atlas Atlas Saturn XVIII - - 1990 Pan Pan Pan Saturn XIX - - 2000 Ymir Ymir Ymir Saturn XX - - 2000 Paaliaq Paaliaq Paaliaq Saturn XXIX - - 2000 Siarnaq Siarnaq Siarnaq Saturn XXI - - 2000 Tarvos Tarvos Tarvos Saturn XXIV - - 2000 Kiviuq Kivivq Kiviuq Saturn XXII - - 2000 Ijiraq Iiraq Ijiraq Saturn XXX - - 2000 Thrymr Thrymer Thrymr Saturn XXVII - - 2000 Skathi Scathi Skathi Saturn XXV - - 2000 Mundilfari Mvndilfari Mundilfari Saturn XXVIII - - 2000 Erriapo Erriapo Erriapus Saturn XXVI - - 2000 Albiorix Albiorix Albiorix Saturn XXIII - - 2000 Suttungr Svttvnger Suttungr Saturn XXXI - - 2003 Narvi Narvi Narvi Saturn XXXII - - 2004 Méthone Methone Methone Saturn XXXIII - - 2004 Pallène Pallene Pallene Saturn - - 2004 S/2004 S 3 S/2004 S 3 Saturn - - 2004 S/2004 S 4 S/2004 S 4 Saturn XXXIV - - 2004 Pollux Polydeuces Saturn - - 2004 S/2004 S 6 S/2004 S 6 Saturn - - 2005 S/2004 S 7 S/2004 S 7 Saturn XLII - - 2005 Fornjot Fornjot Saturn XL - - 2005 Farbauti Farbauti Saturn XXXVI - - 2005 Ægir Aegir Saturn XXXVII - - 2005 Bebhionn Bebhionn Saturn - - 2005 S/2004 S 12 S/2004 S 12 Saturn - - 2005 S/2004 S 13 S/2004 S 13 Saturn XLIII - - 2005 Hati Hati Saturn XXXVIII - - 2005 Bergelmir Bergelmir Saturn XLI - - 2005 Fenrir Fenrir Saturn - - 2005 S/2004 S 17 S/2004 S 17 Saturn XXXIX - - 2005 Bestla Bestla Saturn XXXV - - 2005 Daphnis Daphnis Saturn XLIV - - 2006 Hyrrokkin Hyrrokkin Saturn - - 2006 S/2006 S 1 S/2006 S 1 Saturn XLV - - 2006 Kari Kari Saturn - - 2006 S/2006 S 3 S/2006 S 3 Saturn LI - - 2006 Greip Greip Saturn XLVI - - 2006 Loge Loge Saturn L - - 2006 Jarnsaxa Jarnsaxa Saturn XLVIII - - 2006 Surtur Surtur Saturn XLVII - - 2006 Skoll Skoll Saturn LII - - 2007 Tarqeq Tarqeq Saturn - - 2007 S/2007 S 2 S/2007 S 2 Saturn - - 2007 S/2007 S 3 S/2007 S 3 Saturn XLIX - - 2007 Anthée Anthe Saturn LIII - - 2009 Égéon Aegaeon 2060 - 13,65 1977 Chiron Chiron 10199 - 15,86 1997 Chariklo Χαρικλώ Chariklo 54598 - 16,47 2000 Bienor Bienor Sol VII 19,22 1781 Herschel Uranus Vranvs Ουρανός Uranus Uranus III - - 1787 Herschel Titania Titania Τιτάνια Titania Uranus IV - - 1787 Herschel Obéron Oberon Όμπερον Oberon Uranus I - - 1851 Lassell Ariel
Recommended publications
  • Demoting Pluto Presentation
    WWhhaatt HHaappppeenneedd ttoo PPlluuttoo??!!!! Scale in the Solar System, New Discoveries, and the Nature of Science Mary L. Urquhart, Ph.D. Department of Science/Mathematics Education Marc Hairston, Ph.D. William B. Hanson Center for Space Sciences FFrroomm NNiinnee ttoo EEiigghhtt?? On August 24th Pluto was reclassified by the International Astronomical Union (IAU) as a “dwarf planet”. So what happens to “My Very Educated Mother Just Served Us Nine Pizzas”? OOffifficciiaall IAIAUU DDeefifinniittiioonn A planet: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit. A dwarf planet must satisfy only the first two criteria. WWhhaatt iiss SScciieennccee?? National Science Education Standards (National Research Council, 1996) “…science reflects its history and is an ongoing, changing enterprise.” BBeeyyoonndd MMnneemmoonniiccss Science is “ not a collection of facts but an ongoing process, with continual revisions and refinements of concepts necessary in order to arrive at the best current views of the Universe.” - American Astronomical Society AA BBiitt ooff HHiiststoorryy • How have planets been historically defined? • Has a planet ever been demoted before? Planet (from Greek “planetes” meaning wanderer) This was the first definition of “planet” planet Latin English Spanish Italian French Sun Solis Sunday domingo domenica dimanche Moon Lunae Monday lunes lunedì lundi Mars Martis
    [Show full text]
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Potential Resources on and from the Asteroids/Comets; Threats
    ASTEROIDS AND COMETS: POTENTIAL RESOURCES LECTURE 21 NEEP 533 HARRISON H. SCHMITT EROS C-TYPE NASA/NEAR SHOEMAKER/APL 11X11X34 KM ASTEROIDS IN GENERAL 1.3 GM/CM3 MAIN BELT ASTEROIDS BETWEEN JUPITER AND MARS NEAR EARTH ASTEROIDS SOME MAY BE SPENT COMETS EARTH CROSSING ASTEROIDS SOME MAY BE SPENT COMETS “CENTAUR” ASTEROIDS BETWEEN JUPITER AND URANUS CHIRON, 1979 VA, AND 133P/ELST-PIZARRO ALSO HAVE COMET- LIKE BEHAVIOR “TROJAN” ASTEROIDS JUPITER’S ORBIT AND CONTROLLED BY IT GENERAL CHARACTERISTICS RUBBLE PILES (?) NO ASTEROID >150M ROTATES FASTER THAN ONE REVOLUTION PER 2 HOURS CALCULATED LIMIT FOR RUBBLE TO STAY TOGETHER 1998 KY26 IS 30M IN DIAMETER, ROTATES IN 10.7 MIN. AND MAY BE SOLID MAY BE A TRANSITION IN ORBITAL CHARACTERISTICS AND / OR COMPOSITION BETWEEN SOME ASTEROIDS AND COMETS • S-TYPE OTHER ASTEROIDS – INNER ASTEROID BELT – EVIDENCE OF HEATING AND DIFFERENTIATION – 29 TELESCOPIC SPECTRA (Binzel, et al., 1996) • INTERMEDIATE BETWEEN S-TYPE AND ORDINARY CHONDRITES – 1. DISTINCT ROCK TYPES VS DIVERSE LARGER BODIES – 2. ABUNDANCE OF OPAQUE MATERIALS – 3. FRESH SURFACES (MOST LIKELY) • BASALTIC ACHONDRITES (6%) – 4 VESTA AT 2.36 AU [MAIN BELT PARENT (?)] – TOUTATIS - NEA (RADAR STUDY) • 4.5X2.4X1.9KM, 2.1 GM/CM3, TWO ROTATIONS, I.E., TUMBLING (5.4 AND 7.3 DAYS) – 1459 MAGNYA AT 3.15 AU [FRAGMENT OF LARGER BODY (?)] EROS • (Lazzaro, et al, 2000, Science, 288) C-TYPE (REVISED BY GRS DATA) 11X11X33 KM 2.7 GM/CM3 5.27 HR ROTATION NASA/NEAR SHOEMAKER/APL OTHER ASTEROIDS • D-TYPE CARBONACEOUS CHONDRITE (BEYOND MAIN BELT ASTEROIDS) – TAGISH
    [Show full text]
  • 000881536.Pdf (3.344Mb)
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da sailboat para sistemas binários Guaratinguetá 2016 Tiago Francisco Lins Leal Pinheiro Estudo da sailboat para sistemas binários Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Bacharel em Física da Faculdade de Engenharia do Campus de Gua- ratinguetá, Universidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Graduação em Bacharel em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2016 Pinheiro, Tiago Francisco Lins Leal L654e Estudo da sailboat para sistemas binários / Tiago Francisco Lins Leal Pinheiro– Guaratinguetá, 2016. 57 f.: il. Bibliografia: f. 53 Trabalho de Graduação em Bacharelado em Física – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2016. Orientador: Prof. Dr. Rafael Sfair 1. Planetas - Orbitas 2. Sistema binário (Matematica) 3. Metodos de simulação I. Título . CDU 523. DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacherelado em Física Faculdade de Engenharia de Guaratin- guetá - UNESP 2011 Bacherelado em Engenharia de Produção Centro Universitário Salesiano de São Paulo - UNISAL 2008 / 2010 Ensino Médio Instituto Santa Teresa AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível. aos meus pais Roberto Carlos Pinheiro e Jurema Lins Leal Pinheiro, e irmãos Maria Teresa, Daniel, Gabriel e Rafael, que apesar das dificuldades enfrentadas, sempre incentivaram meus estudos.
    [Show full text]
  • Discovery of Earth's Quasi-Satellite
    Meteoritics & Planetary Science 39, Nr 8, 1251–1255 (2004) Abstract available online at http://meteoritics.org Discovery of Earth’s quasi-satellite Martin CONNORS,1* Christian VEILLET,2 Ramon BRASSER,3 Paul WIEGERT,4 Paul CHODAS,5 Seppo MIKKOLA,6 and Kimmo INNANEN3 1Athabasca University, Athabasca AB, Canada T9S 3A3 2Canada-France-Hawaii Telescope, P. O. Box 1597, Kamuela, Hawaii 96743, USA 3Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 Canada 4Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA 6Turku University Observatory, Tuorla, FIN-21500 Piikkiö, Finland *Corresponding author. E-mail: [email protected] (Received 18 February 2004; revision accepted 12 July 2004) Abstract–The newly discovered asteroid 2003 YN107 is currently a quasi-satellite of the Earth, making a satellite-like orbit of high inclination with apparent period of one year. The term quasi- satellite is used since these large orbits are not completely closed, but rather perturbed portions of the asteroid’s orbit around the Sun. Due to its extremely Earth-like orbit, this asteroid is influenced by Earth’s gravity to remain within 0.1 AU of the Earth for approximately 10 years (1997 to 2006). Prior to this, it had been on a horseshoe orbit closely following Earth’s orbit for several hundred years. It will re-enter such an orbit, and make one final libration of 123 years, after which it will have a close interaction with the Earth and transition to a circulating orbit.
    [Show full text]
  • CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
    Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… .
    [Show full text]
  • Earth's Recurrent Quasi-Satellite?
    2002 AA: Earth’s recurrent quasi-satellite ? Pawel Wajer To cite this version: Pawel Wajer. 2002 AA: Earth’s recurrent quasi-satellite ?. Icarus, Elsevier, 2009, 200 (1), pp.147. 10.1016/j.icarus.2008.10.018. hal-00510967 HAL Id: hal-00510967 https://hal.archives-ouvertes.fr/hal-00510967 Submitted on 23 Aug 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript 2002 AA29: Earth’s recurrent quasi-satellite ? Paweł Wajer PII: S0019-1035(08)00381-3 DOI: 10.1016/j.icarus.2008.10.018 Reference: YICAR 8801 To appear in: Icarus Received date: 11 April 2008 Revised date: 20 October 2008 Accepted date: 23 October 2008 Please cite this article as: P. Wajer, 2002 AA29: Earth’s recurrent quasi-satellite ?, Icarus (2008), doi: 10.1016/j.icarus.2008.10.018 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Asteroid Strike! Near-Earth Asteroids
    Asteroid Attack! Asteroid Attack! asteroid 243 Ida A few years ago, astronomers discovered a mile-wide rock tumbling through space. At first, the scientists feared that the newly discovered space rock would plow into Earth on February 1, 2019. Scientists named the space rock NT7 and clocked its speed at 7 miles per second. The scientists thought the asteroid was heading straight for Earth! Asteroid Strike! A mile-wide asteroid could take out an entire continent, scientists say. Fearing the worst, scientists kept their eyes on NT7. They plotted its orbit, or path, around the sun. After watching NT7 for several weeks, scientists found out that NT7 would miss Earth on February 1, 2019. Near-Earth Asteroids ReadWorks.org Copyright © 2009 Weekly Reader Corporation. All rights reserved. Used by permission.Weekly Reader is a registered trademark of Weekly Reader Corporation. Asteroid Attack! Most asteroids orbit the sun between Mars and Jupiter. NT7, however, is a near-Earth asteroid. Near-Earth asteroids orbit the sun close to Earth. NT7 orbits the sun once every 837 days. Its orbit sometimes takes NT7 as far from the sun as Mars. At other times, it is within Earth's orbit. Scientists know about nearly 350 near-Earth asteroids. They carefully map the orbits of those asteroids to make sure the asteroids don't come too close to our planet. Scientists say anywhere from 500 to 1,000 near-Earth asteroids are yet to be discovered. Scientists are searching the sky for them. They want to have plenty of warning if one comes too close.
    [Show full text]
  • Dynamical Evolution of the Cybele Asteroids
    MNRAS 451, 244–256 (2015) doi:10.1093/mnras/stv997 Dynamical evolution of the Cybele asteroids Downloaded from https://academic.oup.com/mnras/article-abstract/451/1/244/1381346 by Universidade Estadual Paulista J�lio de Mesquita Filho user on 22 April 2019 V. Carruba,1‹ D. Nesvorny,´ 2 S. Aljbaae1 andM.E.Huaman1 1UNESP, Univ. Estadual Paulista, Grupo de dinamicaˆ Orbital e Planetologia, 12516-410 Guaratingueta,´ SP, Brazil 2Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA Accepted 2015 May 1. Received 2015 May 1; in original form 2015 April 1 ABSTRACT The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is ad- jacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effects. We confirm the detec- tion of the new Helga group at 3.65 au, which could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance.
    [Show full text]
  • Universidade Estadual Paulista "Júlio De Mesquita Filho" Campus De Guaratinguetá
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da estabilidade de anéis em exoplanetas Guaratinguetá 2019 Tiago Francisco Lins Leal Pinheiro Estudo da estabilidade de anéis em exoplanetas Trabalho Mestrado apresentado ao Conselho da Pós Graduação em Mestrado em Física da Faculdade de Engenharia do Campus de Guaratinguetá, Univer- sidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Mestre em Mestrado em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2019 Pinheiro, Tiago Francisco Lins Leal P654E Estudo da estabilidade de anéis em exoplanetas / Tiago Francisco Lins Leal Pinheiro – Guaratinguetá, 2019. 57 f : il. Bibliografia: f. 54 Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2019. Orientador: Prof. Dr. Rafael Sfair 1. Exoplanetas. 2. Satélites. 3. Métodos de simulação. I. Título. CDU 523.4(043) Luciana Máximo Bibliotecária/CRB-8 3595 DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacharelado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" 2017 / 2019 Mestrado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" Dedico este trabalho aos meus pais, Roberto e Jurema, aos meus irmãos, Maria Teresa, Daniel, Gabriel e Rafael, a minha sobrinha Giovanna Maria e amigos. AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Precision Astrometry for Fundamental Physics – Gaia
    Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M.
    [Show full text]