Aspects of the Behaviour of African Giant Pouched Rats (Cricetomys Sp

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Behaviour of African Giant Pouched Rats (Cricetomys Sp Aspects of the behaviour of African giant pouched rats (Cricetomys sp. nov) which impacts seed dispersal of large- seeded tree species in a West African montane forest landscape. A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy in Ecology at the University of Canterbury Biplang G. Yadok University of Canterbury Christchurch, New Zealand 2018 Table of Contents Table of Contents ....................................................................................................................... ii List of Tables ........................................................................................................................... viii List of Figures ............................................................................................................................. x Acknowledgements .................................................................................................................. xv Abstract ..................................................................................................................................xviii Chapter 1: Background, scatterhoarding, small mammals and seed dispersal ........................ 1 1.1 Introduction................................................................................................................. 1 1.2 Food hoarding ............................................................................................................. 1 1.2.1 Ecology of tropical scatterhoarding rodents ....................................................... 3 1.2.2 Scatterhoarding rodents and seed dispersal ....................................................... 4 1.2.3 Factors influencing scatterhoarding behaviour in rodents ................................. 6 1.2.4 Habitats of tropical scatterhoarding rodents ...................................................... 8 1.2.5 Scatterhoarding rodents in Africa ...................................................................... 10 1.3 African Giant Pouched rats Cricetomys spp .............................................................. 11 1.4 Seed dispersal in the study area - Ngel Nyaki forest ................................................ 13 1.5 Aim and research questions ...................................................................................... 15 1.6 References ................................................................................................................. 16 Chapter 2: Population dynamics and activity patterns of the African giant pouched rat Cricetomys sp nov. in Ngel Nyaki Forest Reserve .................................................................... 21 2.1 Introduction............................................................................................................... 22 2.1.1 Population density of forest mammals.............................................................. 22 2.1.2 Demographics of small mammals ...................................................................... 23 2.1.3 Methods for sampling small mammals.............................................................. 26 2.1.4 Population dynamics of small mammals in the tropics ..................................... 28 2.1.5 Distribution of African giant pouched rats. ....................................................... 28 ii 2.1.6 Hypotheses ........................................................... Error! Bookmark not defined. 2.2 Methods .................................................................................................................... 30 2.2.1 Live-trapping ...................................................................................................... 31 2.2.2 Camera trapping ................................................................................................ 32 2.2.3 Statistical Analyses ............................................................................................. 33 2.3 Results ....................................................................................................................... 35 2.4 Discussion .................................................................................................................. 46 2.4.1 Microhabitats with burrows and the presence of Cricetomys .......................... 47 2.4.2 Cricetomys morphometrics ................................................................................ 47 2.4.3 Distribution of Cricetomys in NNFR ................................................................... 48 2.4.4 Uneven density of Cricetomys in the forest core .............................................. 49 2.4.5 Uneven densities of male and female Cricetomys ............................................ 51 2.4.6 Spatial movement of Cricetomys ....................................................................... 52 2.4.7 Cricetomys activity pattern ................................................................................ 52 2.5 Conclusion ................................................................................................................. 53 2.5 References ..................................................................................................................... 53 Chapter 3: Effect of food availability on the abundance of African giant pouched rat (Cricetomys sp. nov.) in Ngel Nyaki Forest Reserve ................................................................. 62 3.1 Introduction............................................................................................................... 62 3.1.1 Food availability and the density of small mammals......................................... 64 3.1.2 Distribution of tropical scatterhoarding rodents and their associated food items 65 3.1.3 Distribution of Afrotropical scatterhoarding rodents........................................ 66 3.1.4 Hypotheses ........................................................... Error! Bookmark not defined. 3.2 Methods .................................................................................................................... 68 3.2.1 Large plots .......................................................................................................... 69 iii 3.2.2 Camera trapping and burrow survey ................................................................. 70 3.2.3 Small plots .......................................................................................................... 71 3.2.4 Statistical analyses ............................................................................................. 71 3.3 Results ....................................................................................................................... 72 3.3.1 Density of Cricetomys in large plots .................................................................. 72 3.3.2 Density of Cricetomys burrows in small plots. ................................................... 74 3.4 Discussion .................................................................................................................. 77 3.4.1 Cricetomys abundance and distribution of trees .............................................. 77 3.4.2 Density of Cricetomys burrows and distribution of trees .................................. 79 3.4.3 Implications for seed dispersal .......................................................................... 81 3.4.4 Conclusion .......................................................................................................... 81 3.5 References ................................................................................................................. 82 Chapter 4: Effect of predation risk on microhabitat use by African giant pouched rats (Cricetomys sp. nov) ................................................................................................................. 85 4.1 Introduction............................................................................................................... 86 4.1.1 Predation risk and vegetation structure ............................................................ 87 4.1.2 Measuring predation risk ........................................................................................ 88 4.1.3 Predation risk in small mammals ............................................................................ 90 4.1.4 Predation risk, microhabitat use and seed dispersal by African giant pouched rats .......................................................................................................................................... 92 4.1.2 Hypotheses ........................................................... Error! Bookmark not defined. 4.2 Methods .................................................................................................................... 93 4.2.1 Study site. ........................................................................................................... 94 4.2.2 GUD experiment ................................................................................................ 94 4.2.3 Spool and line experiment ................................................................................. 96 4.2.4 Statistical analyses ............................................................................................. 98 iv 4.3 Results ....................................................................................................................... 99 4.3.1 GUD and predation risk ....................................................................................
Recommended publications
  • PLAGUE STUDIES * 6. Hosts of the Infection R
    Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume.
    [Show full text]
  • No Evidence for Proteolytic Venom Resistance in Southern African Ground Squirrels
    1 No evidence for proteolytic venom resistance in southern African ground squirrels Molly A. Phillips, Jane M. Waterman, Pg Du Plessis, Martin Smit, and Nigel C. Bennett Abstract Many species that interact with venomous snakes show resistances to their venoms. The family Sciuridae has several North American members that harass venomous snakes and show proteolytic resistances in their sera. We examined sera collected from an African ground squirrel (Xerus inauris) against two sympatric venomous snakes (Bitis arietans and Naja annulifera) and found no support for proteolytic resistance. Our results add to our understanding of the risks in predator defense within the family Sciuridae. Keywords: Xerus inauris; Bitis arietans; Naja annulifera; Venom; Venom resistance; Predator-prey Animal venoms are a complex mixture of proteins and peptides that induce many destructive physiological effects for a variety of purposes, including prey capture (Fry et al., 2008; Jansa and Voss, 2011), digestion (Thomas and Pough, 1979), and defense (Kardong, 1982). The evolution of venom in snakes is thought to be a major factor leading to the radiation of over 2500 advanced snake species (Vidal, 2002). Some animals that interact with venomous snakes have physiological resistance to venom. As a predator, the Indian grey mongoose (Herpestes edwardsii) is resistant to the haemorrhagic effects caused by the venom of many snake species (Tomihara et al., 1990). California ground squirrels (Spermophilus (Otospermophilus) beecheyi) defend against snake predation by mobbing and have resistance against the proteolytic activity of the venom from northern Pacific rattlesnakes (Crotalus oreganus) (Biardi, 2000). The Cape ground squirrel (Xerus inauris) is a ground-dwelling sciurid that inhabits the arid regions of southern Africa (Skurski and Waterman, 2005).
    [Show full text]
  • Acouchi (Myoprocta Pratti)
    HISTOLOGICAL AND BIOCHEMICAL STUDIES ON THE OVARY AND OF PROGESTERONE LEVELS IN THE SYSTEMIC BLOOD OF THE GREEN ACOUCHI (MYOPROCTA PRATTI) I. W. ROWLANDS, W. and D. G. KLEIMAN* Wellcome Institute of Comparative Physiology, Zoological Society of London, Regent's Park, London, N.W.I (Received 1st January 1970) Summary. Combined histological and biochemical studies have been made in a small series of pregnant and non-pregnant acouchis. All pregnant animals had twin foetuses and their ovaries contained two to five large corpora lutea (cl) of ovulation and variable numbers of accessory cl which were very much smaller in size and bore evidence of having arisen from un-ovulated follicles. Normal Graafian follicles were also present, together with many small atretic follicles. The true corpora reached maximum size by the end of the 2nd week of pregnancy and had regressed before parturition. The occurrence of maximum secretory activity in early pregnancy, as indicated from esti¬ mates of the mean size of luteal cells, was confirmed by assays of luteal progesterone concentration. The accessory cl tended to increase in number as pregnancy advanced. The luteal cells, though slightly smaller, were otherwise indistinguish¬ able from those of the true corpora and, depending on the stage of preg¬ nancy, contributed 25 to 100% of the total amount of progesterone secreted by the ovary. In early pregnancy, plasma progesterone concentration increased rapidly to a level that was four times as great as that found in non-preg¬ nant acouchis, and which thereafter declined. The rate of growth and decline of the cl of pregnancy, their secretory activity and the levels ofprogesterone in the systemic blood are compared with those reported in some other hystricomorph rodents.
    [Show full text]
  • <I>Psammomys Obesus</I>
    Journal of the American Association for Laboratory Animal Science Vol 51, No 6 Copyright 2012 November 2012 by the American Association for Laboratory Animal Science Pages 769–774 Sex-Associated Effects on Hematologic and Serum Chemistry Analytes in Sand Rats (Psammomys obesus) Julie D Kane,1,* Thomas J Steinbach,1 Rodney X Sturdivant,2 and Robert E Burks3 We sought to determine whether sex had a significant effect on the hematologic and serum chemistry analytes in adult sand rats (Psammomys obesus) maintained under normal laboratory conditions. According to the few data available for this species, we hypothesized that levels of hematologic and serum chemistry analytes would not differ significantly between clinically normal male and female sand rats. Data analysis revealed several significant differences in hematologic parameters between male and female sand rats but none for serum biochemistry analytes. The following hematologic parameters were greater in male than in female sand rats: RBC count, hemoglobin, hematocrit, red cell hemoglobin content, and percentage monocytes. Red cell distribution width, hemoglobin distribution width, mean platelet volume, and percentage lymphocytes were greater in female than in male sand rats. The sex of adult sand rats is a source of variation that must be considered in terms of clinical and research data. The data presented here likely will prove useful in the veterinary medical management of sand rat colonies and provide baseline hematologic and serum chemistry analyte information for researchers wishing to use this species. Psammomys obesus, commonly called the sand rat or fat sand Sand rats currently are not raised at any commercial rodent rat, is a diurnal desert animal belonging to the family Muridae breeding farms in the United States.
    [Show full text]
  • Primates of the Lower Río Urubamba, Peru
    16 Neotropical Primates 19(1), December 2012 PRIMATES OF THE LOWER URUBAMBA REGION, PERU, WITH COMMENTS ON OTHER MAMMALS Tremaine Gregory1,2, Farah Carrasco Rueda1, Jessica L. Deichmann1, Joseph Kolowski1, and Alfonso Alonso1 1Center for Conservation Education and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C. 20013-7012 2Corresponding author; e-mail: [email protected] Abstract We present data on encounter rates and group sizes of primates in the Lower Urubamba Region of Peru, an unprotected area little represented in the literature. We censused a total of 467.7km on 10 transects during two seasons and documented nine primate species in the area. Compared to nearby protected areas, group encounter rates were lower and group sizes were smaller for all species except Saguinus fuscicollis and S. imperator. Relatively high abundance of S. imperator and low abun- dance of larger bodied primates is a possible example of density compensation resulting from hunting pressure. In addition to the primates, 23 other mammal species were observed or photographed by camera traps, including Procyon cancrivorus, which was not previously reported in the area. Keywords: Lower Urubamba, Peru, primate densities Resumen Presentamos los datos de tasas de encuentro y tamaños grupales de especies de primates en la Región del Bajo Urubamba en Perú, un área no protegida poco representada en la literatura. Censamos un total de 467.7km a lo largo de 10 transectos durante dos estaciones y documentamos la presencia de nueve especies de primates en el área. Comparando nuestros datos con los de áreas protegidas cercanas, las tasas de encuentro fueron bajas y los tamaños grupales fueron menores para todas las especies a excepción de Saguinus fuscicollis y S.
    [Show full text]
  • Brown Rat Rattus Norvegicus
    brown rat Rattus norvegicus Kingdom: Animalia Division/Phylum: Chordata Class: Mammalia Order: Rodentia Family: Muridae ILLINOIS STATUS common, nonnative FEATURES The brown rat is large (head-body length seven to 10 inches, tail length five to eight inches) for a rat. It has a salt-and-pepper look with brown, black and gold hairs. There are darker hairs down the middle of the back. The belly fur is gray- or cream-colored. The feet have white fur. The ringed, scaly, one-colored tail is nearly hairless. BEHAVIORS The brown rat may be found statewide in Illinois. It lives in buildings, barns, houses, dumps and other areas associated with humans. This rodent will eat almost anything. It does eat food intended for human use and can contaminate food supplies. It is usually associated with poor sanitary conditions and livestock areas. This rat will carry food to its nest instead of eating it where the food is found. The brown rat is known to spread diseases. This nocturnal mammal is a good climber. It produces some sounds. Mating may occur at any time throughout the year. The average litter size is seven. Young are born helpless but develop rapidly. They are able to live on their own in about one month. Females begin reproducing at the age of about three months. If conditions are favorable, a female may reproduce once per month. The average life span of the brown rat is about one and one-half years. This species was introduced to the United States from Europe by humans. HABITATS Aquatic Habitats none Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources.
    [Show full text]
  • Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
    Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
    [Show full text]
  • A Review of Bristly Ground Squirrels Xerini and a Generic Revision in the African Genus Xerus
    Mammalia 2016; 80(5): 521–540 Boris Kryštufek*, Ahmad Mahmoudi, Alexey S. Tesakov, Jan Matějů and Rainer Hutterer A review of bristly ground squirrels Xerini and a generic revision in the African genus Xerus DOI 10.1515/mammalia-2015-0073 Received April 28, 2015; accepted October 13, 2015; previously Introduction published online December 12, 2015 Bristly ground squirrels from the arid regions of Central Abstract: Bristly ground squirrels Xerini are a small rodent Asia and Africa constitute a coherent monophyletic tribe tribe of six extant species. Despite a dense fossil record the Xerini sensu Moore (1959). The tribe contains six species group was never diverse. Our phylogenetic reconstruction, in three genera of which Atlantoxerus and Spermophilop­ based on the analysis of cytochrome b gene and including sis are monotypic. The genus Xerus in its present scope all known species of Xerini, confirms a deep divergence (Thorington and Hoffmann 2005), consists of four species between the African taxa and the Asiatic Spermophilopsis. in three subgenera: X. inauris and X. princeps (subgenus Genetic divergences among the African Xerini were of a Geosciurus), X. rutilus (subgenus Xerus), and X. eryth­ comparable magnitude to those among genera of Holarc- ropus (subgenus Euxerus). Recent phylogenetic recon- tic ground squirrels in the subtribe Spermophilina. Evi- struction based on molecular markers retrieved Xerus to dent disparity in criteria applied in delimitation of genera be paraphyletic with respect to Atlantoxerus (Fabre et al. in Sciuridae induced us to recognize two genera formerly 2012), therefore challenging the suitability of the generic incorporated into Xerus. The resurrected genera (Euxerus arrangement of the group.
    [Show full text]
  • Namibia, 2018
    Nambia and little bits of Botswana, Zimbabwe, and Zambia, July-August 2018 Michael Kessler In 1994, my wife Elke and I did our first joint trip to Namibia, spending 3 weeks mainly in the arid western parts of the country and seeing such goodies as Brown Hyena, Caracal, Black Mongoose, Honey Badger, 3 species of sengis, and Southern African Porcupine. In 2010, we made our first family trip to Africa to KwaZulu Natal, seeing much of the large game. So now we decided to return to Namibia with the family, with the aim of exploring some new areas and searching out the less easily seen species. Time and budget limited the trip to about 2½ weeks and after some deliberation, we settled on the following sites: Sesriem + Sossusvlei for the dunes; Walvisbay for Heaviside’s Dolphin + Welwitschia; Erindi for African Wild Dog and the other game; Toko Lodge for the night drives, especially for Aardvark; Etosha only briefly for the amazing wildlife spectacle; Mahango for the Okavango specials (birds and mammals); and Victoria Falls for, well, the falls. This resulted in the following Itinerary: 25.7: Left Zurich in the evening, arriving on 26.7.: am in Jo’burg, followed by a connecting flight to Windhoek where we picked up the rental car, did some grocery shopping, and fell into our beds at Arebbusch Lodge on the southern outskirts of the city. 27.7.: Long drive to Desert Homestead Lodge at Sesriem. 28.7.: am: visit to Sossusvlei; pm: Cessna flight over the dunes, followed by a night drive back to the lodge, seeing some Bat-eared Foxes.
    [Show full text]
  • Facts and Misconceptions on the Palaearctic Existence of the Striped
    Mammalia 2017; aop Boris Kryštufek, Cătălin Stanciu, Danijel Ivajnšič*, Sidi Imad Cherkaoui and Franc Janžekovič Facts and misconceptions on the Palaearctic existence of the striped ground squirrel https://doi.org/10.1515/mammalia-2017-0060 echo the exclusive ecological requirements of species Received May 26, 2017; accepted July 27, 2017 and their evolutionary history in response to past eco- logical and geological processes (Lomolino et al. 2006). Abstract: The striped ground squirrel has a wide distri- Species’ ranges can be studied at various temporal and bution in the Ethiopian region but is restricted to a small spatial scales provided they are already documented. isolated area in Palaearctic Africa. This fragment was first Before a distributional map can be produced, data on recorded in the late 1940s in the Souss Valley (Morocco), spatial occurrence must be collected in the field. Despite however, not a single new observation has been published its obvious simplicity, field work constitutes a crucial step in the following decades. In September 2016 we surveyed and affects the consistency of analyses which may depend the Souss Valley and found squirrels at 43 sites within upon sophisticated tools and concepts. Incomplete or the triangle between Agadir–Taroudant–Tiznit. Occupied misleading distributional data will unavoidably compro- sites were not distributed at random but occurred between mise subsequent analyses and assessments. an altitude of 45–254 m and on a substrate with coarse tex- In this study we have addressed the only Palaearctic ture containing >65% sand. The vast majority of the sites occurrence of the striped ground squirrel Euxerus with squirrels (69%) were classified as suburban, culti- erythropus (Geoffroy Saint-Hilaire 1803) (formerly Xerus vated or both.
    [Show full text]
  • Northern Cape Provincial Gazette Vol 15 No
    ·.:.:-:-:-:-:.::p.=~==~ ::;:;:;:;:::::t}:::::::;:;:::;:;:;:;:;:;:;:;:;:;:::::;:::;:;:.-:-:.:-:.::::::::::::::::::::::::::-:::-:-:-:-: ..........•............:- ;.:.:.;.;.;.•.;. ::::;:;::;:;:;:;:;:;:;:;:;;:::::. '.' ::: .... , ..:. ::::::::::::::::::::~:~~~~::::r~~~~\~:~ i~ftfj~i!!!J~?!I~~~~I;Ii!!!J!t@tiit):fiftiIit\t~r\t ', : :.;.:.:.:.:.: ::;:;:::::;:::::::::::;:::::::::.::::;:::::::;:::::::::;:;:::;:;:;:;:: :.:.:.: :.:. ::~:}:::::::::::::::::::::: :::::::::::::::::::::tf~:::::::::::::::: ;:::;:::;:::;:;:;:::::::::;:;:::::: ::::::;::;:;:;:;=;:;:;:;:;:::;:;:;::::::::;:.: :.;.:.:.;.;.:.;.:.:-:.;.: :::;:' """"~'"W" ;~!~!"IIIIIII ::::::::::;:::::;:;:;:::;:::;:;:;:;:;:::::..;:;:;:::;: 1111.iiiiiiiiiiii!fillimiDw"""'8m\r~i~ii~:i:] :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:':.:.:.::::::::::::::{::::::::::::;:: ;.;:;:;:;:t;:;~:~;j~Ij~j~)~( ......................: ;.: :.:.:.;.:.;.;.;.;.:.:.:.;.;.:.;.;.;.;.:.;.;.:.;.;.:.; :.:.;.:.: ':;:::::::::::-:.::::::;:::::;;::::::::::::: EXTRAORDINARY • BUITENGEWONE Provincial Gazette iGazethi YePhondo Kasete ya Profensi Provinsiale Koerant Vol. 15 KIMBERLEY, 19 DECEMBER 2008 DESEMBER No. 1258 PROVINCE OF THE NORTHERN CAPE 2 No. 1258 PROVINCIAL GAZETTE EXTRAORDINARY, 19 DECEMBER 2008 CONTENTS • INHOUD Page Gazette No. No. No. GENERAL NOTICE· ALGEMENE KENNISGEWING 105 Northern Cape Nature Conservation Bill, 2009: For public comment . 3 1258 105 Noord-Kaap Natuurbewaringswetontwerp, 2009: Vir openbare kommentaar . 3 1258 PROVINSIE NOORD-KAAP BUITENGEWONE PROVINSIALE KOERANT, 19 DESEMBER 2008 No.1258 3 GENERAL NOTICE NOTICE
    [Show full text]
  • Rodent Assemblages in the Mosaic of Habitat Types in the Zambezian Bioregion
    diversity Article Rodent Assemblages in the Mosaic of Habitat Types in the Zambezian Bioregion Vincent R. Nyirenda 1,* , Ngawo Namukonde 1 , Matamyo Simwanda 2 , Darius Phiri 2, Yuji Murayama 3 , Manjula Ranagalage 3,4 and Kaula Milimo 5 1 Department of Zoology and Aquatic Sciences, School of Natural Resources, Copperbelt University, P.O. Box 21692, Kitwe 10101, Zambia; [email protected] 2 Department of Plant and Environmental Sciences, School of Natural Resources, Copperbelt University, P.O. Box 21692, Kitwe 10101, Zambia; [email protected] (M.S.); [email protected] (D.P.) 3 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan; [email protected] (Y.M.); [email protected] (M.R.) 4 Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka 5 Department of National Parks and Wildlife, Ministry of Tourism and Arts, Private Bag 1, Chilanga 10100, Zambia; [email protected] * Correspondence: [email protected]; Tel.: +260-977-352035 Received: 12 July 2020; Accepted: 21 September 2020; Published: 23 September 2020 Abstract: Rodent assemblages have ecological importance in ecosystem functioning and protected area management. Our study examines the patterns of assemblages of rodents across four habitat types (i.e., Miombo woodland, Acacia woodland, grasslands and farmlands) in the savanna environment. Capture-mark-recapture (CMR) methods were applied for data collection across the Chembe Bird Sanctuary (CBS) landscape. The Non-metric Multi-Dimensional Scaling (NMDS) was used for exploratory data analysis, followed by Analysis of Variance (ANOVA) and Tukey–Kramer’s Honestly Significant Difference (HSD) post-hoc tests.
    [Show full text]