An Overview of the Phalaenopsis Orchid Genome by BAC End Sequence Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Integrated Orchid Functional Genomics Database
Orchidstra: An Integrated Orchid Functional Genomics Database Special Focus Issue Chun-lin Su1,3, Ya-Ting Chao1,3, Shao-Hua Yen1, Chun-Yi Chen1, Wan-Chieh Chen1, Yao-Chien Alex Chang2 and Ming-Che Shih1,* 1Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan 2Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan. 3These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; Fax, +886-2-26515693. (Received November 9, 2012; Accepted January 5, 2013) A specialized orchid database, named Orchidstra (URL: Abbreviations: BLAST, basic local alignment search tool; – Databases http://orchidstra.abrc.sinica.edu.tw), has been constructed CAM, crassulacean acid metabolism; EIF5A, eukaryotic trans- to collect, annotate and share genomic information for lation initiation factor 5A; EST, expressed sequence tag; GO, orchid functional genomics studies. The Orchidaceae is a Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and large family of Angiosperms that exhibits extraordinary bio- Genomes; miRNA, microRNA; NGS, next-generation sequen- diversity in terms of both the number of species and their cing; SRA, sequence read archive; TSA, transcriptome distribution worldwide. Orchids exhibit many unique biolo- shotgun assembly. gical features; however, investigation of these traits is cur- rently constrained due to the limited availability of genomic information. Transcriptome information for five orchid spe- Introduction cies and one commercial hybrid has been included in the Orchidaceae, the orchid family, diverged from the Liliaceae Orchidstra database. Altogether, these comprise >380,000 and Amaryllidaceae, is the largest family of Angiosperms, with non-redundant orchid transcript sequences, of which >800 genera and >25,000 species. -
Evolutionary Conservation of the Orchid MYB Transcription Factors DIV, RAD, and DRIF
ORIGINAL RESEARCH published: 01 November 2019 doi: 10.3389/fpls.2019.01359 Evolutionary Conservation of the Orchid MYB Transcription Factors DIV, RAD, and DRIF Maria Carmen Valoroso 1, Rómulo Sobral 2, Giuseppe Saccone 1, Marco Salvemini 1, Maria Manuela Ribeiro Costa 2 and Serena Aceto 1* 1 Department of Biology, University of Naples Federico II, Naples, Italy, 2 BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga, Portugal The MYB transcription factors DIVARICATA (DIV), DIV-and-RAD-Interacting-Factor (DRIF), and the small interfering peptide RADIALIS (RAD) can interact, forming a regulatory module that controls different plant developmental processes. In the snapdragon Antirrhinum majus, this module, together with the TCP transcription factor CYCLOIDEA (CYC), is responsible for the establishment of floral dorsoventral asymmetry. The spatial gene expression pattern of the OitDIV, OitDRIF, and OitRAD homologs of Orchis italica, an orchid with zygomorphic flowers, has suggested a possible conserved role of these Edited by: Jen-Tsung Chen, genes in bilateral symmetry of the orchid flower. Here, we have identified four DRIF genes National University of Kaohsiung, of orchids and have reconstructed their genomic organization and evolution. In addition, Taiwan we found snapdragon transcriptional cis-regulatory elements of DIV and RAD loci generally Reviewed by: Minsung Kim, conserved within the corresponding orchid orthologues. We have tested the biochemical University of Manchester, interactions among OitDIV, OitDRIF1, and OitRAD of O. italica, showing that OitDRIF1 United Kingdom Chao Bian, can interact both with OitDIV and OitRAD, whereas OitDIV and OitRAD do not directly Beijing Genomics Institute (BGI), interact, as in A. -
The Atlanta Orchid Society Bulletin
The Atlanta Orchid Society Bulletin Affiliated with the American Orchid Society, the Orchid Digest Corporation and the Mid-America Orchid Congress 2001 Recipient of the American Orchid Society’s Distinguished Affiliated Societies Service Award Newsletter Editor: Danny Lentz Society Librarian: Elaine Jacobson Volume 45: Number 7 www.altantaorchidsociety.org July 2004 JULY EVENTS The Meeting: 8:00 PM Monday, July 12, 2004, Atlanta Botanical Garden - Day Hall Mr. Mark Rose, Breckinridge Orchids Mark Rose, the owner of Breckinridge Orchids in North Carolina, will present a wonderful slide show on species Paphiopedilums and will talk about their culture. Mark is well known for his work in Paphs and Phalaenopsis; and, since he grows in a climate similar to Atlanta, he should have a lot of useful information that Atlanta members can apply. He will be bringing plants for sale. You can order plants by phone at 336-656-7991. His website does not appear to be working (www.breckinridgeorchids.com). The cutoff date for preorders is July 8. Inside This Issue Atlanta Orchid Society 2004 Officers…………………………………………..….…………… Page 2 Collector’s Item……Encyclia cordigera (H.B.K.) Dressler……Ron McHatton…..………... Page 2 Events Out and About………………Dates for your Calendar…………...……….…….……… Page 3 Minutes of the June Meeting ………………..….…….…...……….………….…………….… Page 3 The June Exhibition Table (with notes by Ron McHatton)….………………………………..... Page 4 Recent AOS Awards from the Atlanta Judging Center…………………………………………. Page 7 American Cattleyas – book info……………………………………………………………….. Page 9 Second Quarter Exhibition Table Results, Notices……………………………………….……. Page 10 Understanding pH Management and Plant Nutrition part 4 : Substrates…….Bill Argo …….... After Page 10 All contents © Atlanta Orchid Society unless otherwise noted. -
Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001). -
Nuclear DNA Contents of Phalaenopsis Sp. and Doritis Pulcherrima
J. AMER. SOC. HORT. SCI. 126(2):195–199. 2001. Nuclear DNA Contents of Phalaenopsis sp. and Doritis pulcherrima Sandy Lin and Hsiao-Ching Lee Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China Wen-Huei Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Chi-Chang Chen and Yen-Yu Kao Department of Botany, National Taiwan University, Taipei, 10764, Taiwan, Republic of China Yan-Ming Fu and Yao-Huang Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Tsai-Yun Lin1 Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China ADDITIONAL INDEX WORDS. Orchidaceae, endoreduplication, flow cytometry, genome size ABSTRACT. Nuclear DNA contents were estimated by flow cytometry in 18 Phalaenopsis Blume species and Doritis pulcherrima Lindl. DNA amounts differed 6.07-fold, from 2.74 pg/diploid nuclear DNA content (2C) in P. sanderiana Rchb.f. to 16.61 pg/2C in P. parishii Rchb.f. Nuclear DNA contents of P. aphrodite Rchb.f. clones, W01-38 (2n = 2x = 38), W01-41 (2n = 3x = 57), and W01-22 (2n = 4x = 76), displayed a linear relationship with their chromosome numbers, indicating the accuracy of flow cytometry. Our results also suggest that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes. The comparative analyses of DNA contents may provide information to molecular geneticists and systematists for genome analysis in Phalaenopsis. Endoreduplication was found in various tissues of P. equestris at different levels. The highest degree of endoreduplication in P. -
Genome-Wide Identification and Classification of MIKC-Type MADS
He et al. BMC Plant Biology (2019) 19:223 https://doi.org/10.1186/s12870-019-1836-5 RESEARCH ARTICLE Open Access Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid Chunmei He1, Can Si1,2, Jaime A. Teixeira da Silva3, Mingzhi Li4 and Jun Duan1* Abstract Background: MADS-box genes play crucial roles in plant floral organ formation and plant reproductive development. However, there is still no information on genome-wide identification and classification of MADS-box genes in some representative plant species. A comprehensive investigation of MIKC-type genes in the orchid Dendrobium officinale is still lacking. Results: Here we conducted a genome-wide analysis of MADS-box proteins from 29 species. In total, 1689 MADS-box proteins were identified. Two types of MADS-boxgenes,termedtypeIandII,werefoundinland plants, but not in liverwort. The SQUA, DEF/GLO, AG and SEP subfamilies existed in all the tested flowering plants, while SQUA was absent in the gymnosperm Ginkgo biloba, and no genes of the four subfamilies were found in a charophyte, liverwort, mosses, or lycophyte. This strongly corroborates the notion that clades of floral organ identity genes led to the evolution of flower development in flowering plants. Nine subfamilies of MIKCC genes were present in two orchids, D. officinale and Phalaenopsis equestris,whiletheTM8,FLC,AGL15 and AGL12 subfamilies may be lost. In addition, the four clades of floral organ identity genes in both orchids displayed a conservative and divergent expression pattern. Only three MIKC-type genes were induced by cold stress in D. -
Classification Index - Printed on 10/13/2014 Page 1
Classification Index - Printed On 10/13/2014 Page 1 Reference Classification Description 001 Open Competition - Commercial Growers Display of 1-24 Orchid Plants in flower by a Commercial Grower 002 Open Competition - Commercial Grower Display of 25 or more Orchid Plants in flower by a Commercial Grower 003 Open Competition - Orchid Societies Display of any number of Orchid Plants in flower by an Orchid Society 004 Open Competition - Non-Commercial Growers Display of any number of Orchid Plants in flower by a Non-Commercial grower but not an Orchid Society 005 Open Competition - Educational Educational exhibits, any size 006 Open Competition - Artwork Display of artwork of any type, any size 007 Open Competition - Cut Flower & Floral Arrangement Display of cut flowers and floral arrangements containing orchids, any size 008 Blank Class 009 Blank Class 010 Cattleya Alliance (Laeliinae) Epidendrum species 011 Cattleya Alliance(Laeliinae) Encyclia species 012 Cattleya Alliance (Laeliinae) Epidendrum and Encyclia hybrids and intergeneric hybrids with any genera INCLUDING Cattleya 013 Cattleya Alliance (Laeliinae) Brassovola and Rhyncholaelia species, hybrids, and intergeneric hybrids other than above but EXCLUDING Cattleya, e.g.Bl, Rl 014 Cattleya Alliance (Laeliinae) Laelia species, hybrids, and intergeneric hybrids other than above but EXCLUDING Cattleya Classification Index - Printed On 10/13/2014 Page 2 Reference Classification Description 015 Cattleya Alliance (Laeliinae) Sophronitis species, hybrids, and intergeneric hybrids other than above but EXCLUDING Cattleya 016 Cattleya Alliance (Laeliinae) Schomburgkia species, hybrids, and intergeneric hybrids other than above INCLUDING Cattleya, ex. Schombocattleya 017 Cattleya Alliance (Laeliinae) Broughtonia species, hybrids, and intergeneric hybrids other than above INCLUDING Cattleya, ex. -
Phalaenopsis[I]
A peer-reviewed version of this preprint was published in PeerJ on 12 May 2016. View the peer-reviewed version (peerj.com/articles/2017), which is the preferred citable publication unless you specifically need to cite this preprint. Huang J, Lin C, Cheng T, Huang Y, Tsai Y, Cheng S, Chen Y, Lee C, Chung W, Chang BC, Chin S, Lee C, Chen F. 2016. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017 https://doi.org/10.7717/peerj.2017 The genome and transcriptome of the Phalaenopsis yield insights into floral organ development and flowering regulation Jian-Zhi Huang, Chih-Peng Lin, Ting-Chi Cheng, Ya-Wen Huang, Yi-Jung Tsai, Shu-Yun Cheng, Yi-Wen Chen, Chueh-Pai Lee, Wan- Chia Chung, Bill Chia-Han Chang, Shih-Wen Chin, Chen-Yu Lee, Fure-Chyi Chen Phalaenopsis orchid is an important potted flower with high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802’, a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal the key role of PhAGL6b in the regulation of flower organ development involves alternative splicing. We also show gibberellin pathways that regulate the expression of genes control flowering time during the stage in reproductive phase change induced by cool temperature. -
Appendix: Orchid Potting Mixtures - an Abridged Historical Review 1
Appendix: Orchid potting mixtures - An abridged historical review 1 T. J. SHEEHAN Introduction There is little doubt that potting media development over time has been the salvation of orchid growers (Bomba, 1975). When epiphytic orchids were first introduced into England and other European countries in the 18th century growers could not envision plants growing in anything but soil. '"Peat and loam' were good for everything and frequently became the mass murderers of the first generation of epiphytic orchids," Hooker is believed to have said around the end of the 19th century; England had become the graveyard of tropical orchids. Undoubtedly this was in reference to the concern individuals were having over the potting media problems. This problem also drew the attention of such noted individuals as John Lindley and Sir Joseph Paxton, as well as the Gardener's Chronicle, who noted that "The Rule of Thumb" had nothing to say about orchid growing; it was only effective in orchid killing (Bomba 1975). Fortunately, the ingenuity of growers solved the problem as innovative potting mixes evolved over the years. After visiting a number of orchid growing establishments it immediately becomes obvious to any orchid grower, professional or hobbyist, that orchids, both epiphytic and terrestrial, will grow in a wide variety of media. It has often been stated that epiphytic orchids can be grown in any medium except soil as long as watering and fertilization are adjusted to fit the mix being used. Ter restrial orchids seem to thrive in any medium that contains 40% or more organic matter. Reading cultural recommendations from the early days of orchid growing is most interesting and highly recommended. -
Genome-Wide Study of SBT Genes in Eight Plant Species: Evolution and Expression Outlines for Development and Stress
Genome-wide Study of SBT Genes in Eight Plant Species: Evolution and Expression Outlines for Development and Stress Sulin Wen Shanghai Jiao Tong University https://orcid.org/0000-0002-5994-3439 Guanqun Chen Shanghai Jiao Tong University Tingting Huang Shanghai Jiao Tong University Xiaohui Shen ( [email protected] ) School of Design, Shanghai Jiao Tong University, Shanghai 200240, China. Research article Keywords: Subtilisin-like proteases, Genome-wide study, Evolution, Expression pattern, Arabidopsis, Rice Posted Date: October 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-77460/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Subtilisin-like proteases (or subtilases, SBT), a specic family of serine peptidases, are a very big family in plants. Previous studies showed association of SBTs with environment response and development. However, it is still unclear about the function and features of SBTs. Also, there is little information about SBTs classication or protein function research. Results: The characters of SBTs in eight plant species including Arabidopsis, rice, wheat etc. were analyzed. The analysis mainly contained evolutionary relationship, gene structure, chromosomal location, gene synteny and expression pattern. In short, the evolutionary trend of SBTs in the eight plant species was revealed. The expression pattern showed a scattered distribution of SBTs in diverse plant organs. Conclusions: Our results reveal classication, feature and expression pattern of SBT. Then the results might offer clues for future studies about SBTs and additionally related to their possible function in plants against stress and development. Background Protease is a kind of important enzyme in most living things, which breakdown of proteins into smaller polypeptides or single amino acids. -
A Guide to a Successful Orchid Show American Orchid Society
A Guide to a Successful Orchid Show American Orchid Society A Guide to a Successful Orchid Show Developed by Edna K. Hamilton Past President, St. Croix Orchid Society Member, AOS Affiliated Societies Committee Edited by Gayle Brodie AOS Affiliated Societies Committee 1st Edition - 1/10/2016 American Orchid Society A GUIDE TO A SUCCESSFUL ORCHID SHOW Table of Contents I. Some Suggestions for Orchid Societies .......................................................... 4 1.1 Introduction ....................................................................................... 4 1.2 The Orchid Exhibition ......................................................................... 4 II. Planning an Orchid Show ............................................................................ 5 2.1 Introduction ....................................................................................... 5 2.2 Nature of the Show ............................................................................ 5 2.2.1 Exhibition Format ......................................................................... 5 2.2.2 Sales............................................................................................. 6 2.2.3 Theme .......................................................................................... 7 2.3 Time and Season for a Show............................................................ 7 2.5 AOS Judging ....................................................................................... 8 III. Organizing an Orchid Show....................................................................... -
PC25 Doc. 32.2
Original language: English PC25 Doc. 32.2 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fifth meeting of the Plants Committee Online, 2-4, 21 and 23 June 2021 Species specific matters Maintenance of the Appendices Orchids checklists APPENDIX-II ORCHID CHECKLIST 1. This document has been submitted by the Scientific Authority for Flora of the United Kingdom of Great Britain and Northern Ireland.* 2. The context of this document pertains to PC24 Com. 8 (Rev. by Sec.). The UK Scientific Authority and the United Nations Environment Programme – World Conservation Monitoring Centre (UNEP-WCMC) were to prepare a checklist for Orchidaceae, presenting Appendix I and Appendix II species separately. a) This was to be undertaken by generating an output for Orchidaceae from the World Checklist of Selected Plant Families. The output includes accepted names, synonyms and country-level distribution information. b) The dataset for Orchidaceae was provided by The World Checklist of Selected Plant Families. The World Checklist of Selected Plant Families has become an international collaborative programme with more than 150 contributors from 22 countries. The main goal of the World Checklist of Selected Plant Families is to provide high quality peer reviewed baseline data on all accepted taxa included in each family. c) To make the review of proposed changes manageable, a comparison was undertaken between the World Checklist of Selected Plant Families output and the current CITES nomenclature standard references for Orchidaceae. 3. The Appendix I Orchid Checklist was adopted at the 18th CITES Conference of the Parties (Switzerland, 2019). This checklist and the proposed checklist were compiled using the same methodology.