Swent June 2009.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Swent June 2009.Pmd VOL. 34, NO. 2 SOUTHWESTERN ENTOMOLOGIST JUN. 2009 Efficacy of Entomopathogenic Fungi in Suppressing Pecan Weevil, Curculio caryae (Coleoptera: Curculionidae), in Commercial Pecan Orchards David I. Shapiro-Ilan1, Ted E. Cottrell1, Wayne A. Gardner2, Robert W. Behle3, Bill Ree4, and Marvin K. Harris4 Abstract. The pecan weevil, Curculio caryae (Horn), is a key pest of pecans, Carya illinoinensis (Wangenh.) K. Koch. The entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin are pathogenic to and are being developed as microbial control agents for pecan weevil. One approach to suppressing pest populations and the resultant damage might be to apply entomopathogenic fungi when adult pecan weevils are emerging from the soil. Here we report the efficacy of B. bassiana (GHA strain) and M. anisopliae (F52 strain) applied to trees in orchards at three locations: Byron, GA, Fort Valley, GA, and Comanche, TX. At Fort Valley, treatments included B. bassiana as an oil-based spray with a UV-protective screen applied to the trunk, M. anisopliae applied as an impregnated fiber band stapled onto the trunk, and a nontreated check. At Byron, GA, we compared the B. bassiana trunk treatment to a nontreated check. Treatments at the Texas location were the B. bassiana trunk application, M. anisopliae applied as a trunk band and as a soil drench, and a nontreated check. At each location, weevils were trapped and transported to the laboratory for 15 to 17 days post-treatment to record mortality and mycosis. At both Georgia locations, B. bassiana caused 80% mortality and mycosis, which was significantly greater than mortality observed in the check (33%); mortality and mycosis in the M. anisopliae treatment at Fort Valley did not differ from that observed in the check. In Texas, due to insufficient replication in plots, statistical comparison among treatments was not possible. However, mean percentages of mortality of pecan weevils after 7 and 14 days were 38 and 55% in the check, 75 and 88% in the B. bassiana-treated plots, and 57 and 75% in the M. anisopliae- treated plots. These results indicate potential for B. bassiana trunk sprays to suppress adult pecan weevil. Future research is needed to determine if the approach contributes to economic levels of crop protection. __________________ 1USDA-ARS, SE Fruit and Nut Tree Research Laboratory, Byron, GA 31008 2Department of Entomology, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA 30223 3USDA-ARS-NCAUR, Peoria, IL 61604 4Department of Entomology, Texas A&M University, College Station, TX 77843 This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or recommendation for its use by USDA. 111 Introduction The pecan weevil, Curculio caryae (Horn), is a key insect pest of pecans, Carya illinoinensis (Wangenh.) K. Koch, throughout the southeastern US as well as portions of Texas and Oklahoma (Payne and Dutcher 1985). The insects have a 2- or 3-year life cycle (Harris 1985). Adult weevils emerge from soil in late July-August to feed on and oviposit in developing nuts. Once larval development is completed within the nut, 4th instars drop to the soil and burrow to a depth of 8-25 cm, and form a soil-cell to overwinter. The following fall approximately 90% of the larvae pupate and spend the next 9 months in the soil as adults before emerging. The remaining 10% of the population spend 2 years in the soil as larvae and emerge as adults in the 3rd year. Current recommendations for controlling pecan weevil consist mainly of above-ground applications of chemical insecticides (e.g., carbaryl) targeting adults in the canopy (Harris 1999, Hudson et al. 2006). Application of chemical insecticides is recommended every 7-10 days during peak emergence of pecan weevils (Ree et al. 2005, Hudson et al. 2006). Because of problems associated with resurgence of aphids and mites that often result from chemical applications (Dutcher and Payne 1985), as well as other environmental and regulatory concerns, developing alternative control strategies is desirable. Microbial pesticides such as the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin are potential alternatives (Shapiro- Ilan 2003, Shapiro-Ilan et al. 2008). Both the larval and adult stages of pecan weevil are susceptible to infection by these agents (Tedders et al. 1973; Gottwald and Tedders 1983; Harrison et al. 1993; Shapiro-Ilan et al. 2003, 2008, 2009). Prior research indicated that many emerging pecan weevils either crawl or fly to the trunk (Raney and Eikenbary 1968, Cottrell and Wood 2008). By exploiting this behavior, significant mortality may be obtained by applying the fungus to soil surrounding the trunk, or directly to the trunk, thereby targeting the insects before they enter the canopy to feed and oviposit. Indeed, recently, Shapiro-Ilan et al. (2008) reported that suppression of pecan weevil was affected by the method of applying B. bassiana; spraying the fungus directly on the trunk resulted in greater mortality of pecan weevil relative to direct application to soil. Additionally, another approach to applying fungus to the trunk, i.e., wrapping non-woven fiber bands impregnated with M. anisopliae around the trunk, caused significant mortality of emerging pecan weevils (Shapiro-Ilan et al. 2009). The objective of this study was to investigate the potential of applications of these fungi to suppress pecan weevil in commercial pecan orchards. We applied entomopathogenic fungi in pecan orchards at three weevil-infested locations: Byron, GA, Fort Valley, GA, and Comanche, TX. Materials and Methods ‘Stewart’, ‘Frotcher’, and ‘Van Demon’ varieties of pecan trees >150 years old in loamy-sand soil were used at Byron, GA. The Fort Valley, GA, orchard consisted of loamy-sand soil with ‘Stuart’ and ‘Schley’ trees approximately 60 years old. The Texas location was approximately 16 km north of Comanche, and consisted of native variety trees in a fine sandy-loam soil; trees varied in age and size (all non-pecan tree species had been removed 30 years earlier.) 112 Beauveria bassiana (GHA strain), i.e., Botanigard®, used in all field experiments was obtained from Emerald BioAgriculture Corporation (Butte, MT) as an emulsifiable oil formulation containing 2 x 1013 conidia per 946-ml container. This strain (GHA) has been labeled for use in controlling pecan weevil. Metarhizium anisopliae (F52 strain), formulated into fiber bands, was produced at the USDA- ARS Research Station in Stoneville, MS, based on procedures described by Hajek et al. (2006), and refrigerated while shipped to Byron, GA. M. anisopliae conidia for application to soil were produced through a biphasic system (liquid blastospore suspension poured into sterile rice medium in bags) based on the method of Leland et al. (2005). All fungal material was stored at approximately 4oC and used within 2 months of receipt. Before application, viability of conidia was verified on agar as described by Goettel and Inglis (1997), and >80% viability was deemed acceptable. At the two orchards in Georgia, the experiments were in randomized complete block designs with six blocks (tree rows) containing each treatment and a nontreated check. Each plot consisted of a single tree. At the Texas location, the experiment also had six trees per treatment and check, but treatments were not randomized; each treatment (or check) consisted of a single large-block in a demonstration-style plot (note that because of lack of randomization among plots the data from the orchard in Texas were not analyzed statistically). The fungi were applied according to Shapiro-Ilan et al. (2008, 2009). B. bassiana was applied as a trunk treatment at all locations, whereas (because of a shortage of material) M. anisopliae trunk-bands were applied at Fort Valley, GA, and Comanche, TX, but not at Byron, GA. For trunk application with B. bassiana, 236.5 ml of BotaniGard ES (5 x 1012 conidia) and 100 ml of SoyScreen oil were mixed with sunflower oil (ConAgra Foods, Irving, CA) to reach a total volume of 1 liter. A CO2-charged backpack sprayer (310.3 kPa, Spray Systems Co., Wheaton, IL) with a cone nozzle (5500-X8 adjustable conejet) was used to apply the mixture to approximately 1.5 m of the bottom part of the trunk. The SoyScreen was added as a UV-protecting adjuvant (Compton and Laszlo 2002). The M. anisopliae fungus bands (approximately 45 x 3 cm) were attached horizontally around the circumference of the trunk by stapling the ends and middle of each; six or seven bands were required to encircle the trunk. Two rings of bands were attached to each tree, one approximately 123 cm above the ground and the other 135 cm above the ground. At Comanche, TX, an aqueous ground application of M. anisopliae also was applied around each tree at a rate of 5 x 1012 conidia per plot (hence, the rate-per-unit area was approximately 6.4 x 1010 conidia per m2); M. anisopliae was mixed with approximately 30.3 liters of water and 0.01% Silwet L-77, (Loveland Industries, Inc., Greeley, CO) and applied via watering can to a radius of 5 m around each trunk. Applications were on 15 August 2006 in Georgia and 24 August in Texas. Efficacy of the treatments was estimated for naturally emerging pecan weevils. Adult pecan weevils were collected in Circle traps attached to pecan trunks (Mulder et al. 2003). This is a passive trap that captures insects crawling up the trunk. The traps were made of 1.5-mm wire mesh with an open area approximately 61 cm wide facing toward the soil (to collect ascending weevils) and tapering up to a removable top. Traps were placed on the trunk so the bottom of the trap was approximately 100 cm above the soil surface.
Recommended publications
  • Sunday, March 4, 2012
    Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success
    [Show full text]
  • 54Th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY of AMERICA and the ANNUAL ME
    54th ANNUAL MEETING of the SOUTHWESTERN BRANCH of the ENTOMOLOGICAL SOCIETY OF AMERICA http://swbesa.tamu.edu and the ANNUAL MEETING of the SOCIETY OF SOUTHWESTERN ENTOMOLOGISTS 27 FEBRUARY – 2 MARCH 2006 Omni Austin Hotel at Southpark 4140 Governor’s Row Austin, TX 78744 (512)-383-2602; www.omnihotels.com 1 TABLE OF CONTENTS PAGE SPONSORS 2 MEETING INFORMATION 3 PROGRAM SUMMARY 5 OFFICERS AND COMMITTEES 8 PROGRAM: 11 MONDAY, 27 FEBRUARY 11 TUESDAY, 28 FEBRUARY 11 WEDNESDAY, 1 MARCH 20 THURSDAY, 2 MARCH 28 SWB-ESA AUTHOR INDEX 29 PRESIDENTS AND CHAIRMEN OF SWB-ESA 31 ADDENDA AND NOTES 32 MAP OF HOTEL 35 ABSTRACTS 36 SPONSORS We thank the following people and organizations for their generous donations in support of the SWB-ESA meeting: BASF Specialty Products Bayer Crop Science Dow AgroSciences Monsanto Trece, Inc. 2 MEETING INFORMATION REGISTRATION: All persons attending the meetings or participating in the program must register. On-site registration fees for the SWB-ESA meeting are: Full One day Banquet meeting only only Active SWB or SSWE member $130 $50 $25 Student SWB or SSWE member* 45 25 25 Non-member 150 65 25 Youth member 10 10 10 Spouse/Guest 35 20 25 Honorary/Emeritus Gratis** Gratis Gratis *Student SWB or SSWE members: the fee is waived if you are a volunteer helper at the meeting. **Gratis, but please register Natural Science Tour: Brackenridge Field Laboratory Texas Memorial Museum (time permitting) ESA CERTIFICATION BOARD INFORMATION: Information regarding the Certification Board of ESA is available at the Registration Desk. SPONSORS: We thank our sponsors for their generous support of activities such as the student mixer, Linnaean Games, continental breakfast and breaks, spouses, guests, and retirees’ functionsn.
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • Nut Weevils Ric Bessin, Extension Specialist Entfact-206
    Nut Weevils Ric Bessin, Extension Specialist Entfact-206 Nut weevils can be very serious pests of native and egg in little pockets in the nut. Creamy white grubs non-native nut trees. These damaging insects begin with reddish brown heads hatch and feed inside the to attack the kernels in the developing nuts while the nuts during the fall, reaching 3/5 inch in length. nuts are still on the tree. However, problems often are not noticed until the nuts are harvested and When mature, the grub chews a perfectly round 1/8 opened. Occasionally, these weevil grubs are found inch hole in the side of the nut and falls to the ground in homes or other places nuts are stored. in late fall or early winter, usually between late September and December. They make earthen cells in the ground where they remain as a grub one to two years. Most of the grubs will pupate the following fall. Some, however, do not pupate until the fall of the next year. Adults emerge during the summer following pupation. The entire life cycle requires 2 to 3 years to complete, most of it in the soil. Weevils usually move only a short distance after emerging and often attack nuts on the same trees year after year, so long as there is a crop of nuts. Weevils apparently prefer trees growing in low areas or those near hickory trees. Early maturing varieties Figure 1. A nut weevil are most susceptible to the weevils. Hickory nuts are attacked by the pecan weevil as well.
    [Show full text]
  • Movement of Adult Pecan Weevils Curculio Caryae Within Pecan Orchards
    Agricultural and Forest Entomology (2008), 10, 363–373 DOI: 10.1111/j.1461-9563.2008.00390.x Movement of adult pecan weevils Curculio caryae within pecan orchards Ted E. Cottrell and Bruce W. Wood United States Department of Agriculture, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008, U.S.A. Abstract 1 The pecan weevil Curculio caryae (Horn) (Coleoptera: Curculionidae) is an in- digenous pest of pecan Carya illinoinensis (Wangenh.) K. Koch, in North America. Understanding the movement of this pest from the orchard floor to host trees could lead to pest management practices that exploit weevil behaviour and thus reduce insecticide application to the entire orchard canopy. Furthermore, no information exists on diel periodicity of pecan weevil movement. 2 Movement of adult pecan weevils crawling and flying to the host trunk, flying to the host canopy, crawling within the host canopy and flying between host trees was studied using four types of passive traps over four seasons. Each type of trap was used to capture weevils at different locations on or near the tree and to dis- criminate flying versus crawling behaviour. 3 More pecan weevils crawl to the trunk than fly and a proportion of the popula- tion flies directly from the orchard floor into the pecan canopy. The majority of this movement occurs at dusk. 4 The vertical distribution of weevils was generally uniform throughout the canopy but more weevils were captured in suspended traps nearest tree tops, rather than traps near the ground, when flying between trees and this was significantly so for two of 4 years.
    [Show full text]
  • Thesis-1980D-H178d.Pdf (5.243Mb)
    DEVELOPMENT AND VALIDATION OF A SEQUENTIAL SAMPLING PLAN FOR THE PECAN WEEVIL IN A COM\1ERCIALLY MANAGED PECAN ORCHARD By MI 0-IAEL JOI-IN HALL I) Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1974 Master of Science Oklahoma State University Stillwater, Oklahoma 1977 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1980 DEVELOPMENT AND VALIDATION OF A SEQUENTIAL SAMPLING PLAN FOR THE PECAN WEEVIL IN A COMMERCIALLY MANAGED PECAN ORCHARD T) n~ ~the Graduate College ii 1066245 ' ACKNOWLEDGMENT I would like to express my deepest appreciation to Dr. R. D. Eikenbary, Professor of Entomology, for the help, guidance, and encouragement he has given me throughout the course of my studies. I am greatly indebted to Dr. R. D. MOrrison, Professor of Statistics and Dr. W. D. Warde, Associate Professor of Statistics for their val­ uable assistance in designing the experiment, analyzing the data, and critically reviewing the manuscript. I would also like to thank all of the people in the Department of Statistics for the many hours which they spent in assisting me in the preparation of my data for analysis. I would like to express my gratitude to Drs. G. L. Barnes, Professor of Plant Pathology, J. R. Sauer, Professor of Entomology and M. W. Smith, Assistant Professor of Horticulture for their help in reviewing this manuscript. I would like to thank the Oklahoma Agricultural Experiment Station for its financial support for this study. I would also like to express my indebtedness to the Noble Foundation Ardmore, Oklahoma, and Mr.
    [Show full text]
  • F Laboratory Mortality and Mycosis of Adult Curculio Caryae (Coleoptera: Curculionidae) Following Application of Metarhizium Anisopliae in the Laboratory Or Field'
    F Laboratory Mortality and Mycosis of Adult Curculio caryae (Coleoptera: Curculionidae) Following Application of Metarhizium anisopliae in the Laboratory or Field' David I. Shapiro-IIafl, 2 Ted E. Cottrell, Wayne A. Gardner, 3 Jarrod Leland4 and Robert W. Behle° USDA-ARS, SE Fruit and Nut Tree Research Laboratory, Byron, Georgia 31008 USA J. Entomol. Sd. 44(1): 24-36 (January 2009) Abstract The pecan weevil, Curcu/io catyae (Horn), is a key pest of pecans. The entornopatho- (Metschnikoff) genic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae Sorokin are pathogenic to C. caryae. One approach to suppressing this pest may be to apply entomopathogeflic fungi to adult C. ca,yae when they are emerging from the soil. However, thus far, laboratory screening of fungal isolates has been focused mostly on virulence to larval B. bassiana. Our C. caryae, and published field trials on adult control have focused on application of objective was to determine the potential of M. anisopliaeto control emerging C. caiyae adults. First, a laboratory test was conducted to compare 4 B. bassiana strains (Bb GA2, BbLA3, BbMS1, and C. caiyae adults. Viru- GHA) and 3 M. anisopliae strains (F52, MaLA4, and MaLA7) for virulence to strains. Subsequently, a lence of the M. anisopliae strains was equal or greater than B. bassiarla commercially available M. anisopllae strain (F52) was tested under field conditions when applied as a narrow fiber band that was impregnated with fungus and wrapped around the tree trunk, and/or when applied directly to the soil. In 2005, we applied M. anisopliae as trunk bands with or without additional application to the soil in the same plots.
    [Show full text]
  • The Seasonal Occurrence, Soil Distribution and Flight Characteristics of Curculio Sayi (Coleoptera: Curculionidae) in Mid-Missouri
    THE SEASONAL OCCURRENCE, SOIL DISTRIBUTION AND FLIGHT CHARACTERISTICS OF CURCULIO SAYI (COLEOPTERA: CURCULIONIDAE) IN MID-MISSOURI __________________ A Thesis Presented to The Faculty of the Graduate School University of Missouri – Columbia _____________________ In Partial Fulfillment Of the Requirements for the Degree Master of Science ____________________ By IAN W. KEESEY Thesis Supervisor: Bruce A. Barrett October 2007 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled: THE SEASONAL OCCURRENCE, SOIL DISTRIBUTION AND FLIGHT CHARACTERISTICS OF CURCULIO SAYI (COLEOPTERA: CURCULIONIDAE) IN MID-MISSOURI Presented by Ian W. Keesey A candidate for the degree of Master of Science And hereby certify that in their opinion it is worthy of acceptance. ______________________________________ ______________________________________ ______________________________________ ______________________________________ ACKNOWLEDGEMENTS The research completed over the course of this study would not have been possible without the help of many individuals. I would first like to thank my major advisor, Dr. Bruce Barrett, as his insights and suggestions while preparing this manuscript were vital to its completion. Moreover, I would like to thank him for his many years of support, advice, guidance and encouragement. I would like to thank those at the Horticulture and Agroforestry Research Center (HARC), especially Terry Woods and Randy Theissen, for their assistance in this project. I would also like to thank Dr. Ken Hunt, who was always willing to give advice and grant access to chestnuts, and without his expertise and associations with state nut growers this project might not have been a success. Dr. W. Terrell Stamps played an essential role in handling the gambit of questions associated with my research, both in the field and in the laboratory, and I would like to express my thanks for his continued patience and assistance.
    [Show full text]
  • Stink Bugs: Spatial Distribution, Pecan Phenological Susceptibility and Sampling Program Brian Cowell University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2015 Stink Bugs: Spatial Distribution, Pecan Phenological Susceptibility and Sampling Program Brian Cowell University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, and the Entomology Commons Recommended Citation Cowell, Brian, "Stink Bugs: Spatial Distribution, Pecan Phenological Susceptibility and Sampling Program" (2015). Theses and Dissertations. 1354. http://scholarworks.uark.edu/etd/1354 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Stink Bugs: Spatial Distribution, Pecan Phenological Susceptibility and Sampling Program A Dissertation submitted in partial fulfillment Of the requirements for the degree of Doctor of Philosophy in Entomology By Brian Daniel Cowell College of the Ozarks Bachelor of Science in Biology, 2008 Missouri State University Masters of Natural and Applied Sciences, 2011 December 2015 University of Arkansas This dissertation is approved for recommendation to the graduate council. Dr. Donn Johnson Dissertation Director Dr. Elena Garcia Dr. Russell Mizell Committee Member Committee Member Dr. Fred M. Stephen Dr. Robert Wiedenmann Committee Member Committee Member ABSTRACT An effective management program for stink bugs (SBs) in pecan groves requires knowledge of: stages of the pecans susceptible to SB damage; strata of the tree with SB damaged nuts; a practical SB monitoring method; and, effects of landscapes contributing SBs into pecan groves. Stink bugs produced feeding punctures in pecan shucks at all phenological stages.
    [Show full text]
  • Pecan Weevil Michael Hall
    Pecan Weevil Michael Hall Distribution: The pecan weevil, Curculio caryae Horn, attacks hickory and pecan in most of the pecan growing regions of the United States. Because pecans are a recent introduction into some of the western states, pecan weevil have not become established in far West Texas, New Mexico, Arizona and California. In Louisiana, the pest has been found in most of the pecan producing parishes; however, the most severe problems occur in the northern portions of the state. Description: Adult pecan weevils (Figs. 1 and 2) are about 3/8 inch in length and brownish to gray in color. The adult has a prominent snout which will equal or exceed the length of the body on females. The most commonly encountered stage of the pecan weevil is the grub or larval stage found in the nuts during the harvest season. The larvae are creamy white with reddish heads and are about 3/5 inch in length. Figure 1. Adult pecan weevil. Figure 2. Adult male (left) and adult female (right). Life Cycle: The typical pecan weevil life history is illustrated in Figure 3. Starting in August of year 1, adult weevils begin to emerge from the soil. Emergence usually continues until late September, occasionally extending into October. Research in Louisiana has shown that in years of “normal rainfall patterns,” peak emergence will occur during the last week in August and/or the first week in September. Drought can delay weevil emergence, particularly in heavy soil, because the weevils cannot crawl to the surface. Frequently, late summer rains will loosen the soil and dramatic increases in weevil emergence will occur.
    [Show full text]
  • Table 2. Control Methods for the Eight Major Pecan Arthropod Pests in North America
    % Mortality = 100 (1 – (1 (SR RC)GT)). Pest* Reproductive Capacity Generation Time % Mortality Pecan weevil 75 eggs/female .33 or .50 gen/yr 30 – 53/season** Pecan nut casebearer 50-150 eggs/female 2 gen/yr 99-99.9/season Hickory shuckworm unknown 2-5 gen/yr unknown Black pecan aphid 35 nymphs/female 26 gen/yr 99.9/season Yellow pecan aphid 38 nymphs/female 32 gen/yr 99.9/season Black margined aphid 125 nymphs/female 16 gen/yr 99.9/season Pecan leaf scorch mite 9-36 eggs/female 7-8 gen/yr 99.9/season Fall webworm 300-1000 eggs/female 4 gen/yr*** 98-99.9/season Walnut caterpillar 120-880 eggs/female 2 gen/yr 99-99.9/season * Kernel feeding hemipterans are not listed since they invade the orchard and do not breed in the orchard. ** 97.3 % mortality per generation is required to prevent pecan weevils from increasing in the orchard. 30 % (53%) mortality per year will control weevils with a 3 (2) year life cycle. *** 2 overlapping broods occur each season. Table 2. Control methods for the eight major pecan arthropod pests in North America. Pest Control method for pest Relative efficacy Pecan weevil Broad spectrum insecticides High Curculio caryae (Horn) Quarantine High Risk rating and spot treatment Moderate Trunk treatment Moderate Red imported fire ant as predator Low Pecan nut casebearer Broad spectrum insecticides High Acrobasis nuxvorella Biorational insecticides High (Neunzig) Mating disruption Low Hickory shuckworm Broad spectrum insecticides High Cydia caryana Fitch Biorational insecticides High Sanitation Moderate Black pecan aphid
    [Show full text]
  • Life History and Control of the Cowpea Curculio
    BULLETIN 246 MAY 1938 Life History and Control of the Cowpea Curculio By F. S. ARANT AGRICULTURAL EXPERIMENT STATION OF THE ALABAMA POLYTECHNIC INSTITUTE M. J. FUNCHESS, Director AUBURN, ALA. AGRICULTURAL EXPERIMENT STATION STAFF* President Luther Noble Duncan, M.S., LL.D. M. J. Funchess, M.S., D.Sc., Director of Experiment Station W. H. Weidenbach. B.S., Executive Secretary Kirtley Brown, A.B., Agricultural Editor Mary E. Martin, Librarian Sara Willeford. B.S., Agricultural Librarian Agricultural Economics: B. F. Alvord, M.S. Hxead, Agricultural Economics B. T. Inman, M.S. _._. ______________________ ___Assistant Agricultural Economist E. G. Schiffman, M.S. Assistant Agricultural Economist Agricultural Engineering: R. E. Yoder, Ph.D. Acting Head, Agricultural Engineering J. W. Randolph, M.S. Agricultural Engineer (Coop. U. S. D. A.) E. D. Gordon, M.S. _________________Associate Agricultural Engineer (Coop. U. S. D. A.) E. G. Diseker, M.S. --- _ -_--_Assistant Agricultural Engineer F. A. Kummer, MS.---------------- - Assistant Agricultural Engineer I. F. Reed, M.S. -_------------- Assistant Agricultural Engineer (Coop. U. S. B. A.) C. H. Bailey, B.S. ------- _------- ------- Assistant in Agricultural Engineering C. M. Stokes, B.S. -------------------------------------- -- Graduate Assistant (T. V. A.) Agronomy and Soils: J. W. Tidmore, Ph.D. Head, Agronomy and Soils N. J. Volk, Ph.D. Associate Soil Chemist Anna L. Sommer, Ph.D. ______________________________________-_.________ Associate Soil Chemist G. W. Volk, Ph.D. _Associate Soil Chemist J. A. Naftel, Ph.D. Assistant Soil Chemist J. R. Taylor, Ph.D. Assistant Soil Chemist J. B. Dick, B.S. ---------------------------__ Associate Agronomist (Coop. U. S. D. A.) D.
    [Show full text]