Sulfur in Groundwater

Total Page:16

File Type:pdf, Size:1020Kb

Sulfur in Groundwater Sulfur in Groundwater Sulfur occurs naturally in soils, rocks and minerals. In the aquifer, groundwater comes in contact with these solid materials dissolving them, releasing their constituents, including sulfur (S), to the water. In groundwater, under typical pH conditions, sulfur can occur as three separate 2- 1- ions: sulfate ([SO 4] ), bisulfide ([HS] ) and hydrogen sulfide (H 2S). None of these molecules are regulated by the federal Environmental Protection Agency (EPA), although a secondary standard of 250 mg/L (parts per million) has been established for sulfate. Secondary standards are suggested maximum levels for either a cosmetic or aesthetic reason. Above the 250 mg/L level, sulfate can impart a taste to the water and, depending on the individual, may have a laxative effect. More information is available on EPA’s website ( http://www.epa.gov/safewater/sulfate.html ). From an aesthetic point of view, however, the molecule H 2S is probably the most offensive, having the distinct and unpleasant odor of rotten eggs. Sulfur molecules can be found in most groundwater. Whether it occurs as sulfate, bisulfide, or hydrogen sulfide depends on the amount of oxygen in the water and, to a lesser extent, upon its degree of acidity, i.e., its pH. Sulfur can occur in two forms: as S 2- and as S 6+ . When levels of dissolved oxygen in groundwater are greater than 1-2 mg/L, sulfur occurs as S 6+ and the sulfate molecule predominates. At lower or no dissolved oxygen levels, 2- 1- the sulfur occurs as S and either HS (at a pH greater than ~7) or H 2S (at a pH less than ~7) occurs. The pH at which the divide occurs may differ as a function of the total water chemistry. Dissolved oxygen content is typically low in deep aquifers, or even in shallow aquifers, particularly if the aquifer contains organic matter. Decomposition of the organic matter depletes the oxygen in the water and the sulfur occurs as S 2-. Under these conditions, dissolved hydrogen sulfide is the common sulfur form and is often accompanied by dissolved iron or manganese. When this water is pumped to the surface, the rotten egg odor is detected and the dissolved iron reacts with the oxygen in the atmosphere, changes to Fe 3+ (i.e., is oxidized) and forms rust-colored stains. Many well owners notice the rotten egg smell only occasionally, or perhaps seasonally. This occurs as a result of the amount of recharge water arriving at the aquifer from the surface, or in the summer because the extent of drawdown of the water table results in a deeper portion of the aquifer being tapped. The actual cause and timing of the variation must be considered on a case-by-case basis. Importantly, the sudden occurrence of the rotten egg smell does not necessarily mean that your drinking water source has been impacted by some pollution event . It probably represents natural variations in water chemistry (See Natural Factors Influencing the Composition of Groundwater at http://oregon.gov/DHS/ph/dwp/gwater.shtml). Treatment of the water to remove the hydrogen sulfide odor can be accomplished as easily as letting the water set until the hydrogen sulfide, which occurs as a gas, dissipates into the atmosphere. If the smell persists, there are several treatment options, all of which oxidize the sulfur so that the hydrogen sulfide is transformed in sulfate. These may vary from introducing air or oxygen into the water as it comes from the pump. Alternatively, using an oxidizer such as chlorine will result in the oxidation of sulfur. Importantly, if outside air is used, you should also disinfect the water to inactivate any microorganisms that might be introduced during the process. If you do not want the taste of chlorine in your water, you might consider a carbon filter after the chlorine has had sufficient time to act in order to reduce the chlorine taste/odor. For best results, contact a local water treatment business (look under “water treatment”, “water purifying”, or “water filtration” in the yellow pages). They will have experience with local groundwater conditions and will best be able to assist you. .
Recommended publications
  • Advanced Treatment Processes for Hydrogen Sulfide
    Removing the Stink: Advanced Treatment Processes for Hydrogen Sulfide Clayton Johnson, Christine Owen, Luke Mulford, Shahnawaz Sinha, Zaid Chowdhury, Andre Dieffenthaller, and Andrew Coleman ampa Bay Water supplies drinking The final alternative under considera- water to more than 2 million people in tion is biological oxidation followed by chlo- Clayton Johnson is a project engineer in Tthe greater Tampa Bay and adjacent rination and ultrafiltration following biolog- the Tampa office of the environmental areas. Approximately 60 percent of its source ical oxidation prior to distribution. engineering firm Malcolm Pirnie Inc. water comes from groundwater supplies. This article will discuss preliminary Christine Owen is a water quality assur- ance officer with Tampa Bay Water. Luke Groundwater in some portions of the region findings of this ongoing pilot study, including Mulford is a water quality engineer with has a moderate amount (about 2 mg/L as operational variables and effectiveness of the Hillsborough County Water Resource total sulfides) of hydrogen sulfide. Tampa Bay proposed treatment processes for hydrogen Services. Shahnawaz Sinha is a project Water currently provides water to a water sulfide removal. As many Florida utilities are engineer with Malcolm Pirnie in Phoenix, treatment facility that utilizes aeration fol- faced with the challenge of removing hydro- Arizona. Zaid Chowdhury is a senior lowed by biological oxidation to remove gen sulfide from their groundwater, prelimi- associate with Malcolm Pirnie in Phoenix. hydrogen sulfide. nary results of this study will be broadly Andre Dieffenthaller is a senior associate This combined practice (Figure 1) is applicable. Results from this study will pro- with Malcolm Pirnie in Schaumburg, effective, but there are occasional reductions in vide useful information to water utilities that Illinois.
    [Show full text]
  • Sulfur Safety Data Sheet SDS No: 6192 According to Federal Register / Vol
    Sulfur Safety Data Sheet SDS No: 6192 According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations Revision Date: 10/23/2018 Date of Issue: 08/30/2012 Version: 1.0 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Sulfur Synonyms: Brimstone, Sulfur 1.2. Intended Use of the Product Hydrogen sulfide may be present in trace quantities (by weight) in molten sulfur but may accumulate to toxic or flammable concentrations in enclosed spaces such as molten sulfur storage pits, tanks, or tanker/railcar headspaces. Hydrogen sulfide is not considered a hazard associated with solid sulfur. 1.3. Name, Address, and Telephone of the Responsible Party Customer Hess Tower 1501 McKinney Houston, TX 77010 T:(713) 496-4000 When calling the main operator ask for the EHS Safety Department. All Hess SDSs are also available via the Hess.com website. 1.4. Emergency Telephone Number Emergency Number : (800) 424-9300 CHEMTREC (24 hours) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US Classification Flam. Sol. 2 H228 Skin Irrit. 2 H315 Aquatic Acute 2 H401 Comb. Dust Full text of hazard classes and H-statements : see Section 16. 2.2. Label Elements GHS-US Labeling Hazard Pictograms (GHS-US) : GHS02 GHS07 Signal Word (GHS-US) : Warning Hazard Statements (GHS-US) : May form combustible dust concentrations in air. H228 - Flammable solid. H315 - Causes skin irritation. H401 - Toxic to aquatic life. Precautionary Statements (GHS-US) : P210 - Keep away from heat, sparks, open flames, hot surfaces. - No smoking. P240 - Ground/Bond container and receiving equipment.
    [Show full text]
  • On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota
    Page 1 of 91 Final Report On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota An Environmental and Natural Trust Fund Final Report August 15, 2012 Michael Berndt and Travis Bavin Minnesota Department of Natural Resources 500 Lafayette Rd. St. Paul, MN 55455 Page 2 of 91 Final Report Contents Summary .......................................................................................................................................... 3 Introduction ..................................................................................................................................... 4 Methods ........................................................................................................................................... 5 Sampling Site Selection ................................................................................................................ 5 Chemical Analysis ......................................................................................................................... 6 34 18 Sulfur and Oxygen Isotopes in Dissolved Sulfate (δ SSO4 and δ OSO4)........................................ 7 Stream Gaging .............................................................................................................................. 7 Results .............................................................................................................................................. 7 Watershed Survey .......................................................................................................................
    [Show full text]
  • Platinum-Group Elements and Gold in Sulfide Melts from Modern Arc Basalt (Tolbachik Volcano, Kamchatka)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Australian National University ÔØ ÅÒÙ×Ö ÔØ Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka) M. Zelenski, V.S. Kamenetsky, J.A. Mavrogenes, L.V. Danyushevsky, D. Matveev, A.A. Gurenko PII: S0024-4937(17)30290-6 DOI: doi:10.1016/j.lithos.2017.08.012 Reference: LITHOS 4395 To appear in: LITHOS Received date: 30 May 2017 Accepted date: 21 August 2017 Please cite this article as: Zelenski, M., Kamenetsky, V.S., Mavrogenes, J.A., Danyu- shevsky, L.V., Matveev, D., Gurenko, A.A., Platinum-group elements and gold in sul- fide melts from modern arc basalt (Tolbachik volcano, Kamchatka), LITHOS (2017), doi:10.1016/j.lithos.2017.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka) M. Zelenski a, V.S. Kamenetsky a,b,*, J.A. Mavrogenes c, L.V. Danyushevsky b, D. Matveev d, A.A. Gurenko e a Institute of Experimental Mineralogy RAS, Chernogolovka 142432, Russia b Earth Sciences and CODES, University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia c Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia d Institute of Solid State Physics RAS, Chernogolovka 142432, Russia e Centre de Recherches Pétrographiques et Géochimiques (CRPG), UMR 7358, Université de Lorraine, 54501 Vandoeuvre-lès-Nancy, France * Corresponding author.
    [Show full text]
  • The Determination of Sulfate and Sulfide Sulfur in Rocks Or Minerals
    The Determination of Sulfate and Sulfide Sulfur in Rocks or Minerals By ANGELINA C. VLISIDIS CONTRIBUTIONS TO GEOCHEMISTRY GEOLOGICAL SURVEY BULLETIN 1214-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract_____--__-___-_______-__---____,__-_-__-_---_-_______-_- Dl Introduction. ______________________________________________________ 1 Preparations. _________._.-.__-_-.__.._-_---__----.________._.._____ 2 Standard samples____________________________________________ 2 Reagents. _______________.-_-___-____-__-_-__-_-___-_______-_- 2 Procedure._______________________________________________________ 2 Results__ __________-______-_____----__--_--_----_-_-_-___-___--_ 3 References.._ _____________________________________________________ 5 TABLE Page TABLE 1. Results of sulfide and sulfate sulfur analyses in which varying amounts of a sulfate standard were added to sulfide minerals.. _ D4 m 209-517 66 CONTRIBUTIONS TO GEOCHEMISTRY THE DETERMINATION OF SULFATE AND SULFIDE SULFUR IN ROCKS OR MINERALS By ANGELINA C. VLISEDIS , ABSTRACT A method for the determination of sulfate and sulfide sulfur that occur together in rocks or minerals is presented. All the sulfate sulfur is converted to barium sulfate in an inert atmosphere to prevent oxidation of any sulfide sulfur. Cadmium chloride is added to precipitate any sulfide ion that may be liberated. The sulfate sulfur is then measured indirectly by the determination of the barium and is therefore unaffected by any. subsequent oxidation of the sulfide sulfur.
    [Show full text]
  • Sodium Chlorite Sulfur Destruction
    ® Basic Chemicals Sodium Chlorite Sulfur Destruction Application Description: Advantages of Sodium Chlorite/Chlorine Reduced sulfur compounds are a broad Dioxide: class of oxy-sulfur compounds, such as = = sulfite (SO3 ) and thiosulfate (S2O3 ), that Chlorine dioxide reacts the most rapidly have an oxidant demand. These and does not form chlorinated organic compounds are found in the waste streams by-products. of the petroleum, steel, paper and most While chlorine is the least expensive chemical industries. Their high oxidant chemical, it cannot be used when demand can cause eutrophication of natural organic compounds are present due to waters and excessive chlorine demand in the formation of chlorinated organic by- wastewaters treated by POTWs (Publicly products. Owned Treatment Works). When chlorine can't be used, hydrogen peroxide has the lowest chemical costs. Chlorine dioxide effectively oxidizes these species to sulfate ions over a broad pH range (5-9). Below a pH of 4, sodium Affected Industries: chlorite may be used without the generation Chemicals, Food, Iron & Steel, Mining, Oil of chlorine dioxide. Since these compounds Refining, Plastics & Rubber, Pulp & Paper, are usually found in mixtures of various Textiles ratios the required chlorine dioxide dosage must be determined for each application. Further Information More detailed information on sodium Alternatives: chlorite applications is available upon Hydrogen peroxide solution is added by request through the OxyChem Technical a chemical dosing pump. Services Department. Call or write to: Chlorine gas is added by a vacuum eductor system, while sodium OxyChem hypochlorite solution is added by a Technical Service Department chemical dosing pump. PO Box 12283 Wichita, Kansas 67277-2283 800-733-1165 Ext.
    [Show full text]
  • Common Name: SELENIUM SULFIDE HAZARD SUMMARY
    Common Name: SELENIUM SULFIDE CAS Number: 7446-34-6 RTK Substance number: 1653 DOT Number: UN 2657 Date: October 1995 Revision: October 2001 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Selenium Sulfide can affect you when breathed in and by * If you think you are experiencing any work-related health passing through your skin. problems, see a doctor trained to recognize occupational * Selenium Sulfide should be handled as a CARCINOGEN- diseases. Take this Fact Sheet with you. -WITH EXTREME CAUTION. * Contact can irritate the eyes with possible eye damage. WORKPLACE EXPOSURE LIMITS * Breathing Selenium Sulfide can irritate the nose and The following exposure limits are for Selenium compounds throat. (measured as Selenium): * High exposure may cause headache, nausea, vomiting, garlic odor of the breath, metallic taste and coated tongue. OSHA: The legal airborne permissible exposure limit * Repeated exposure can cause pallor, nervousness and (PEL) is 0.2 mg/m3 averaged over an 8-hour mood changes. workshift. * Selenium Sulfide may damage the liver and kidneys. NIOSH: The recommended airborne exposure limit is IDENTIFICATION 0.2 mg/m3 averaged over a 10-hour workshift. Selenium Sulfide is a bright orange powder. It is used in medicated shampoos. ACGIH: The recommended airborne exposure limit is 3 0.2 mg/m averaged over an 8-hour workshift. REASON FOR CITATION * Selenium Sulfide is on the Hazardous Substance List * Selenium Sulfide may be a CARCINOGEN in humans. because it is regulated by OSHA and cited by ACGIH, There may be no safe level of exposure to a carcinogen, so DOT, NIOSH, NTP, DEP, HHAG and EPA. all contact should be reduced to the lowest possible level.
    [Show full text]
  • Hydrogen Sulfide Public Health Statement
    PUBLIC HEALTH STATEMENT Hydrogen Sulfide Division of Toxicology and Human Health Sciences December 2016 This Public Health Statement summarizes what is known about hydrogen sulfide such as possible health effects from exposure and what you can do to limit exposure. The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal clean-up activities. U.S. EPA has found hydrogen sulfide in at least 34 of the 1,832 current or former NPL sites. The total number of NPL sites evaluated for hydrogen sulfide is not known. But the possibility remains that as more sites are evaluated, the sites at which hydrogen sulfide is found may increase. This information is important because these future sites may be sources of exposure, and exposure to hydrogen sulfide may be harmful. If you are exposed to hydrogen sulfide, many factors determine whether you’ll be harmed. These include how much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of exposure). You must also consider the other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. WHAT IS HYDROGEN SULFIDE? Hydrogen sulfide (H2S) is a flammable, colorless gas that smells like rotten eggs. People usually can smell hydrogen sulfide at low concentrations in air, ranging from 0.0005 to 0.3 parts hydrogen sulfide per million parts of air (ppm). At high concentrations, a person might lose their ability to smell it.
    [Show full text]
  • Kinetics of the Ozonation of Dimethyl Sulfide in the Gas Phase
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1973 Kinetics of the ozonation of dimethyl sulfide in the gas phase Robert John Moody The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Moody, Robert John, "Kinetics of the ozonation of dimethyl sulfide in the gas phase" (1973). Graduate Student Theses, Dissertations, & Professional Papers. 8125. https://scholarworks.umt.edu/etd/8125 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. KINETICS OF THE OZONATION OF DIMETHYL SOLFIDB IN THE GAS PHASE by Robert J, Moody B.S., University of Montana, 1968 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1973 Approved by: Chairman, Board of Examiners Deanf 'Graduait Schoo Date 7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP38926 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Hydrogen Sulfide Fact Sheet
    Hydrogen Sulfide Fact Sheet What is hydrogen sulfide? Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, and hot springs. It can also result from bacterial breakdown of organic matter. It is also produced by human and animal wastes. Bacteria found in your mouth and gastrointestinal tract produce hydrogen sulfide from bacteria decomposing materials that contain vegetable or animal proteins. Hydrogen sulfide can also result from industrial activities, such as food processing, coke ovens, kraft paper mills, tanneries, and petroleum refineries. Hydrogen sulfide is a flammable, colorless gas with a characteristic odor of rotten eggs. It is commonly known as hydrosulfuric acid, sewer gas, and stink damp. People can smell it at low levels. What happens to hydrogen sulfide when it enters the environment? • Hydrogen sulfide is released primarily as a gas and spreads in the air. • Hydrogen sulfide remains in the atmosphere for about 18 hours. • When released as a gas, it will change into sulfur dioxide and sulfuric acid. • In some instances, it may be released as a liquid waste from an industrial facility. How might I be exposed to hydrogen sulfide? • You may be exposed to hydrogen sulfide from breathing contaminated air or drinking contaminated water. • Individuals living near a wastewater treatment plant, a gas and oil drilling operation, a farm with manure storage or livestock confinement facilities, or a landfill may be exposed to higher levels of hydrogen sulfide. • You can be exposed at work if you work in the rayon textiles, petroleum and natural gas drilling and refining, or wastewater treatment industries.
    [Show full text]
  • Sulfur and Zinc Availability from Co-Granulated Zn-Enriched Elemental Sulfur Fertilizers † § § § ⊥ Edson M
    Article pubs.acs.org/JAFC Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers † § § § ⊥ Edson M. Mattiello,*, Rodrigo C. da Silva, Fien Degryse, Roslyn Baird, Vadakattu V. S. R. Gupta, § # and Michael J. McLaughlin , † Department of Soil Science, Universidade Federal de Vicosa,̧ Vicosa,̧ Minas Gerais 36570-900, Brazil § School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, SA 5064, Australia ⊥ CSIRO Agriculture and Food, PMB 2, Glen Osmond, SA 5064, Australia # CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia ABSTRACT: Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES−Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO4, and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl2-extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0−5 and 5−9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES−Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable- Zn concentrations were higher from the point of application in the acidic (62.9 mg dm−3) compared to the alkaline soil (5.5 mg dm−3).
    [Show full text]
  • Oxidation of Sulfide Minerals. V. Galena, Sphalerite and Chalcogite
    Canadian Mineralogist Vol. 18,pp. 365-372(1980) OXIDATIONOF SULFIDEMINERALS. V. GALENA,SPHALERITE AND CHALCOGITE H.F. STEGBR eup L.E. DESJARDINS Mineral SciencesLaboratories, Canada Centre lor Mineral and Energy Technology, Department ol Energy, Mines and Resources,Ottawa, Ontaio KIA OGI AssrRecr long-term stability of sulfide-bearing ores and concentrates.Part of this study was concerned Samples of galena, sphalerite and cbalcocite were with the nature of the products and kinetics of oxidized at 52oC and, 68Vo of relative humidity the oxidation of the commonly encountered periods to five weeks, and the prqd- in air for up sulfide minerals. The oxidation of pyrite, chal- for metal and sulfur-bearing ucts were analyzed pyrrhotite at 52oC and, 687o of. species. Galena is. oxidized to PbSOa, sphalerite copyrite and (RH) has already been in- to ZnSO. * FezO, if iron-bearing, and chalcocite relative humidity to CuO and CuS. The oxidation of galena and vestigated (Steger & Desjardins 1978). This re- sphalerite proceeds according to a linear rate potr summarizes the results of the study 9f tle law: that of chalcocite leads to the formation of a bxidation of galena, sphalerite and chalcocite coherent product layer impenetrable to Oz and HrO under the same conditions. vapor. The air oxidation of galena at relatively low without Keywords: air oxidation, oxidation products, sul- temperatures has been investigated fide minerals, galena, sphalerite, chalcocite. reaching a consensuson the nature of the oxida- tion product. Hagihara (1952), using a re- Sourvrlrnp flection electron-diffraction technique, and Kirkwood & Nutting (1965), using a trans- Nous avons 6tudi6 I'oxydation dans I'air d'6chan- mission electron-diffraction technique, found tillons de galdne, de sphal6rite et de chalcocite i this product to be PbSOo,whereas Leia et al.
    [Show full text]