Introduction Exploring Mount Erebus by Walking Robot

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Exploring Mount Erebus by Walking Robot In Robotics and Autonomous Systems and in the The Robotics Institute 1992 Anuual Research Review as “Dante’s Expediton to Mount Erebus” Exploring Mount Erebus by Walking Robot David Wettergreen, Chuck Thorpe, and Red Whittaker The Robotics Institute, Carnegie Mellon University Dante is a tethered walking robot capable of climb- project was an ambitious attempt to proceed, in 10 ing steep slopes. In 1992 it was created at Carnegie months, from idea to implementation. The culmina- Mellon University and deployed in Antarctica to tion was an expedition to an active volcano, Mount explore an active volcano, Mount Erebus. The Erebus, in Antarctica. Dante project’s robot science objectives were to In terms of robot science, the objectives were to demonstrate a real exploration mission, rough ter- demonstrate a real exploration mission, rough ter- rain locomotion, environmental survival, and self- rain locomotion, environmental survival, and self- sustained operation in the harsh Antarctic climate. sustained operation in the cold, windy, bright, rug- The volcano science objective was to study the ged Antarctic environment. The expedition to unique convecting magma lake inside Mount Ere- Mount Erebus was indeed a real mission. Dante bus’ inner crater. The expedition demonstrated the climbed into the steep sided crater, surviving the advancing state-of-art in mobile robotics and the environment and operating in a self-sustaining man- future potential of robotic explorers. This paper ner until the failure of a critical component, the details our objectives, describes the Dante robot, communications tether, necessitated rescue and the overviews what happened on the expedition and premature termination of the crater exploration. discusses what did and didn’t work. The volcano science objectives were also real and We would like to acknowledge the people whose involved the study of Mount Erebus’ unique con- contributions made Dante and the expedition to vecting magma lake. Dante was equipped with Mount Erebus possible. The mechanism was 2 instruments to determine the chemical and isotopic designed and assembled by Eric Hoffman of K T composition of gas generated by the volcano’s Inc., Matt Arnold, Tad Dockstader, and Dimitrios magma lake, to measure the radioactivity of materi- Apostolopoulous. The electronics were fabricated als near the lake and to measure the temperature of by Bryon Smith, Dan Christian and Scott Boehmke. the magma itself. Paul Keller, Jay West, Chris Fedor, Bill Ross, Dan Christian, and Henning Pangels implemented soft- Dante can rappel up and down steep slopes and sur- ware so that Dante could sense, plan, communicate, mount obstacles as large as 1 meter in height. It can and walk. Leslie Thorpe sewed weatherproof cov- perceive and model the terrain around it using a ers. Chuck Whittaker of RedZone Robotics Inc., scanning laser rangefinder and a trinocular camera Rob McWilliams, and Jim Osborn managed the system. Its planning software determines safe paths project. Jim Martin, Gary Baun, Brian Albrecht, and adjusts the gait to avoid obstacles. While some Jim Frazier, Bob Smith and others at Carnegie Mel- of its computers reside off-board at a base station lon provided critical assistance whenever it was and are linked via a fiber optic cable, Dante is com- needed. The Erebus expedition group included Red putationally self-sufficient, able to chart its own Whittaker, David Wettergreen and Dan Christian course, react to perceived terrain, and acquire data from Carnegie Mellon, Eric Hoffman from K2T from science payload sensors. Dante’s eight panto- Inc., Phil Kyle, Bill McIntosh, Nelia Dunbar and graphic legs are organized in frames of four—an Ken Sims from New Mexico Institute of Mining inner frame and an outer frame—with each coupled and Technology, and David Lavery, and Steve through a drivetrain that provides an intrinsic walk- Thompson from NASA. ing motion. To walk, four legs simultaneously lift Introduction In 1992 a walking robot named Dante1 was 1. The robot is named Dante in reference to the poem, The Divine designed and built at Carnegie Mellon University. Comedy by Dante Alegheri, in which Dante travels to the underworld. Erebus is a cloud of mist that obscures the entry to hell. Early mis- Using a tensioned tether, Dante can ascend and sion scenarios also had a transport robot named Virgil for the Roman descend steep slopes. It is designed to rappel into poet who guides Dante during his quest. In keeping with the theme, and explore active volcanic craters. The Dante the cart used to carry Dante around is called Geryon after a flying dae- mon who gave Dante a lift. 1 of 12 and reach forward while the other four supporting cold. In terms of survival, Dante’s weakness may be legs propel the body. Each of the legs can individu- that building it fast and cheap came at the expense ally adjust its height to avoid obstacles in the ter- of redundancy. The design approach was to choose rain. On steep slopes the tensioned tether provides a single solutions, do the best design possible, make reactive force to gravity, assists in maintaining equi- it reliable, and have very few redundant compo- librium, and allows Dante to rappel like a mountain nents. Such a strategy is also dictated when system climber weight is a guiding concern as the logistics of an This paper briefly introduces our objectives and expedition made it this time. It is a weakness Mount Erebus, describes the Dante robot, over- because it means that single points of system failure views the software system that enabled Dante to will exist. walk, and then describes what happened on Erebus An essential feature of an explorer is its ability to and what we learned. sustain itself for extended periods of time. Our goal Robot Science was to embody Dante with sufficient perceptive and planing ability to sustain operation. Dante is Objectives equipped with perceptive sensors so that it can There are a number of technical challenges in sense its and environment and proprioceptive sen- designing a robot that can rappel into the extreme sors so that it can sense itself. It has on-board com- terrain and environment of a volcanic crater and puting to provide it with basic capabilities for survive. These challenges aligned with our objec- motion. It has sufficient sensing in its feet alone to tive to show that a robot explorer could perform an allow it to grope through the terrain blindly. Using actual exploration mission, that it could handle the its perception and planning abilities Dante can walk terrain and the environment and that it could sustain autonomously. Without much direction from opera- itself. We wished to demonstrate that a walking tors, it should be able to keep going in all but the robot could traverse the rough terrain and steep most difficult of situations. slopes typified by volcanic craters, something Scenario beyond what had been or could be shown in the controlled setting of a laboratory. The terrain of a An untethered robotic device that can climb sheer volcanic crater requires that all we have learned cliff walls is well beyond the state-of-art. We deter- about legged locomotion be put into practice. In mined the safest and most robust method for explor- addition, the steepness of the slope requires the ing a crater would be to rappel down the rock face addition of a tensioned tether for support. The coor- as a human climber would. Early in the project, we dination of this element adds complexity but further envisioned the following scenario. enhances capability of the explorer. At the beginning of the deployment, Dante would Antarctica presents environmental challenges be transported to the crater rim. In order to descend unmet by robotic explorers. The low temperature, the steep walls, Dante’s tether, anchored at the rim, high wind force, intense brightness, and extreme would remain under tension to support much or all terrain are daunting. This severe setting forces of the robot’s weight just like a climbing rope. The issues of environmental survival as well as self-sus- terrain outside the crater, between the mountainside tained operation. To be viable, an explorer must be control station and the summit, might consist of to be rugged and reliable. We wished to take on the patches of snow, large boulders and much rock difficulties of ruggedizing the robot to environmen- debris comparable to a plowed field. A fiber optic tal in order to further the reliability of robots in the line would be strung between the summit and the field. The survival and success of an extended station across this terrain. In order to reduce weight robotic exploration in Antarctica lends credibility to and to allow for long-duration operation, power and the use of robotic explorers and advances the state- high level computing would remain off the robot of-art for terrestrial, lunar and planetary missions. and be transmitted to the robot via the tether. Although it is a prototype, Dante is not a laboratory The robot would descend the crater wall unreeling device—it is a field-worthy robot. Its components tether as it proceeded. The crater walls may have ° ° are selected to withstand the harsh environment slopes between 50 -90 and be composed of both inside a volcano. Its enclosures are sealed and ice and rock. These walls would have embedded heated. Its lenses are coated against the acidic lava bombs and possibly fumarole fed ice towers plume. The metallic surfaces are anodized to harden that must be negotiated. We hoped to find a descent ° them. The computing is specially rated for extreme route of approximately 75 that would drop from 2 of 12 the rim all the way to the bottom of the crater with- out any major obstructions or overhangs.
Recommended publications
  • THE MOUNT EREBUS TRAGEDY Air New Zealand DC10-30 ZK-NZP, Flight NZ901 Th 28 November 1979
    THE MOUNT EREBUS TRAGEDY Air New Zealand DC10-30 ZK-NZP, Flight NZ901 th 28 November 1979 A REVIEW WAVERLEY PARSONS Graduate Certificate in Antarctic Studies 2003 1 TABLE OF CONTENTS ABSTRACT ................................................................................................................... 2 Introduction ................................................................................................. 3 Prelude: Before the Flight of NZ901 .......................................................... 4 Flight Preparation .......................................................................................................... 4 The Flight Path ............................................................................................................... 5 The Accident ............................................................................................... 7 Sector Whiteout ............................................................................................................. 8 Discovery of Wreckage ............................................................................................... 10 ‘Operation Overdue’ .................................................................................................... 12 The Aftermath ...........................................................................................14 The Offical Aircraft Accident Report – ‘Chippindale’s Report’ ................................. 14 The Royal Commission of Inquiry .............................................................................
    [Show full text]
  • MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Geology of Hut Point Peninsula, Ross Island
    significantly below their Curie temperatures (approxi- Wilson, R. L., and N. D. Watkins. 1967. Correlation of mately 550°C.). petrology and natural magnetic polarity in Columbia Plateau basalts. Geophysical Journal of the Royal Astro- Previous work (Pucher, 1969; Stacey and Banerjee, nomical Society, 12(4): 405-424. 1974) indicates that the CRM intensity acquired in a low field is significantly less than the TRM intensity. It thus would appear that if a CRM induced at temperatures considerably below the Curie tempera- Geology of Hut Point Peninsula, ture, contributes a significant proportion to the ob- Ross Island served NRM intensity, too low an intensity value will be assigned to the ancient field. Although it is too early to report a firm value for PHILIP R. KYLE the intensity of the ancient field during the imprint- Department of Geology ing of unit 13 and related flows, we think that the Victoria University strength of the ambient field was more likely to Wellington, New Zealand have been about 0.5 oe (based on samples at about 141 meters) than about 0.1 oe (based on samples SAMUEL B. TREVES 122.18 and 126.06 meters). The virtual dipole Department of Geology moment (Smith, 1967b) calculated for an estimated University of Nebraska field intensity of 0.5 oe at the site is 7 X 10 25 gauss Lincoln, Nebraska 68508 cubic centimeters. This is larger than the value of 5.5 X 1025 gauss cubic centimeters (Smith, 1967b) Hut Point Peninsula is about 20 kilometers long calculated on the basis of paleointensity experiments and 2 to 4 kilometers wide.
    [Show full text]
  • Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
    PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC).
    [Show full text]
  • Mt. Erebus: Mt
    8 7 Mt. Erebus Image Gallery. Image Erebus Mt. Pennycook, Jean of courtesy Photo hut. point up into the sky! the into up point and melt ice the makes steam The rock. the in Opening to an ice tower near the lower Erebus Erebus lower the near tower ice an to Opening They look like icicles that that icicles like look They cracks through sides the out comes volcano the it freezes into pillars. pillars. into freezes it of inside the from Steam hot. very is volcano moves into the cold air, air, cold the into moves the of inside the But long. year all ice and ice. When the hot steam steam hot the When ice. snow by covered is Erebus Mt. that means This forms caves made out of of out made caves forms Antarctica. near is It place. cold a is Island Ross MT. EREBUS: A SURPRISING VOLCANO SURPRISING A EREBUS: MT. VOLCANO SURPRISING A EREBUS: MT. http://beyondpenguins.nsdl.org ABOUT THE AUTHOR Jessica Fries-Gaither Issue 9: Earth’s Changing Surface Elementary Resource Specialist, (December 2008) The Ohio State University Copyright December 2008 – The Ohio State University Jessica taught at the elementary level (grades 4-6) Supported by the National and middle school (grades 5-8 math and science) Science Foundation in Memphis, TN and Anchorage, AK. Her work with MT. EREBUS: Beyond Penguins and Polar Bears involves creating Licensed Under a Creative Commons license. A SURPRISING VOLCANO and managing content for the magazine and blog. http://creativecommons.org/licenses/by-sa/3.0/ BY JESSICA FRIES-GAITHER Find this story and others at: DECEMBER 2008 http://beyondpenguins.nsdl.org/information.php?topic=stories Flesch - Kincaid RL = 3.7 13 2 60 °S ANTARCTICA like to study volcanoes, too? volcanoes, study to like about what happens deep inside it.
    [Show full text]
  • Antarctic Treaty Handbook
    Annex Proposed Renumbering of Antarctic Protected Areas Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted ‘Taylor Rookery 1 101 1992 Rookery Islands 2 102 1992 Ardery Island and Odbert Island 3 103 1992 Sabrina Island 4 104 Beaufort Island 5 105 Cape Crozier [redesignated as SSSI no.4] - - Cape Hallet 7 106 Dion Islands 8 107 Green Island 9 108 Byers Peninsula [redesignated as SSSI no. 6] - - Cape Shireff [redesignated as SSSI no. 32] - - Fildes Peninsula [redesignated as SSSI no.5] - - Moe Island 13 109 1995 Lynch Island 14 110 Southern Powell Island 15 111 1995 Coppermine Peninsula 16 112 Litchfield Island 17 113 North Coronation Island 18 114 Lagotellerie Island 19 115 New College Valley 20 116 1992 Avian Island (was SSSI no. 30) 21 117 ‘Cryptogram Ridge’ 22 118 Forlidas and Davis Valley Ponds 23 119 Pointe-Geologic Archipelago 24 120 1995 Cape Royds 1 121 Arrival Heights 2 122 Barwick Valley 3 123 Cape Crozier (was SPA no. 6) 4 124 Fildes Peninsula (was SPA no. 12) 5 125 Byers Peninsula (was SPA no. 10) 6 126 Haswell Island 7 127 Western Shore of Admiralty Bay 8 128 Rothera Point 9 129 Caughley Beach 10 116 1995 ‘Tramway Ridge’ 11 130 Canada Glacier 12 131 Potter Peninsula 13 132 Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted Harmony Point 14 133 Cierva Point 15 134 North-east Bailey Peninsula 16 135 Clark Peninsula 17 136 North-west White Island 18 137 Linnaeus Terrace 19 138 Biscoe Point 20 139 Parts of Deception Island 21 140 ‘Yukidori Valley’ 22 141 Svarthmaren 23 142 Summit of Mount Melbourne 24 118 ‘Marine Plain’ 25 143 Chile Bay 26 144 Port Foster 27 145 South Bay 28 146 Ablation Point 29 147 Avian Island [redesignated as SPA no.
    [Show full text]
  • The Red Planet's Watery Past
    New observations by rovers and orbiters indicate that liquid water not only existed on Mars, it once covered large parts of the planet’s surface, perhaps for more than a billion years WATER FLOWS ACROSS the Martian surface in an artist’s rendering of how the Red Planet may have looked 2.5 billion to four billion years ago. Salt deposits along the water’s edge C REDI T appear purple in this twilight view. 62 SCIENTIFIC AMERICAN DECEMBER 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. RedThe Planet’s atery W Pastast BY JIM BELL y February 2005 the Mars Exploration Rover named Spirit had already spent more than a year in Gusev Crater, a two-kilometer-deep, Connecticut-size hole in the Red Planet’s surface. Because Gusev lies at the end of an ancient, dry river valley longer than the Grand Canyon, many of us on the rover’s mission team Bhad expected Spirit to fi nd evidence that the crater had been fi lled with water billions of years ago. On the fl at plains where the craft had landed, however, the rover found neither lake deposits nor other preserved signs that water had once fl owed inside Gusev. The rover’s photographs showed only dust and sand and bone-dry volcanic lava rocks. But everything changed once Spirit reached the slopes of the Columbia Hills, about 2.6 kilometers from the landing site. (Each of the hills is named after one of the seven astronauts who died in the space shuttle Columbia disaster in 2003.) As Spirit struggled to climb the western slope of Husband Hill, its wheels dislodged rocks and dug deep C REDI T tracks in the Martian soil.
    [Show full text]
  • Flnitflrclid
    flNiTflRClID A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) A New Zealand geochemist, Dr W. F. Giggenbach, descends into the inner crater of Mt Erebus on December 23 last year in an unsuccessful attempt to take gas samples. Behind him in the lava lake of the volcano where the temperature is 1000deg Celsius. On his rucksack he carries titanium gas sampling rods. Photo by Colin Monteath VOl. 8, NO. 1 1 . Wellington, New Zealand, as a magazine. o6pt61*11061% I 979I ' . SOUTH SANDWICH Is SOUTH GEORGIA f S O U T H O R K N E Y I s x \ *#****t ■ /o Orcadas arg \ - aanae s» Novolazarevskaya ussr XJ FALKLAND Is /*Signyl.uK ,,'\ V\60-W / -'' \ Syowa japan SOUTH AMERICA /'' /^ y Borga 7 s a "Molodezhnaya A SOUTH , .a /WEDDELL T\USSR SHETLAND DRONNING MAUD LAND ENOERBY \] / Halley Bay^ ununn n mMUU / I s 'SEA uk'v? COATS Ld LAND JJ Druzhnaya ^General Belgrano arg ANTARCTIC %V USSR *» -» /\ ^ Mawson MAC ROBERTSON LANO\ '■ aust /PENINSULA,' "*■ (see map below) /Sohral arg _ ■ = Davis aust /_Siple — USA Amundsen-Scott / queen MARY LAND gMirny [ELLSWORTH u s a / ; t h u s s i " LANO K / ° V o s t o k u s s r / k . MARIE BYRD > LAND WILKES LAND Scott kOSS|nzk SEA I ,*$V /VICTORIA TERRE ' •|Py»/ LAND AOEilE ,y Leningradskaya X' USSR,''' \ 1 3 -------"';BALLENYIs ANTARCTIC PENINSULA ^ v . : 1 Teniente Matienzo arg 2 Esperanza arc 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Presidents Frei chile * ? 500 1000 Kilometres 10 Stonington I.
    [Show full text]
  • 14Yearsofdiscovery
    14 YEARS OF DISCOVERIES 14 years of discoveries 14 YEARS OF DISCOVERIES DesignedMARS to last 90 days, Opportunity survived for over a 1 Martian solar decade on Mars. Here day (Sol) we look back on how = the record-breaking 1.027 rover changed the way Earth days we see the Red Planet 2 14 years of discoveries 39 Sols 91 Sols Opportunity’s Opportunity from orbit Opportunity’s journey across Mars has objectives been closely watched and calibrated by the satellites in orbit around the Red Search for signs of past Planet. This image from NASA’s Mars ✔ Global Surveyor shows some of the liquid water tracks of the rover, the craters it was visiting, its back shell and parachute, Determine distribution along with the location of its discarded and composition of heat shield. It was taken on 26 April Martian rocks ✔ 2004 on Sol 91 from a distance of around 400 kilometres (249 miles). Discover the geological processes which formed the Martian terrain ✔ Validate measurements made by probes orbiting Mars ✔ Search for iron containing minerals that may have been formed in water ✔ Signs of past water This is a microscopic image of part of a rock called 'Last Determine the texture of Chance'. The view here is around five centimetres (two rocks and soils and what inches) across and was taken on Opportunity’s 39th created them ✔ Martian day. The texture of the rock has led scientists to believe that water was once present in the area in which Assess whether Mars’ climate it was found – the Meridiani Planum area of Mars, which was ever fit for life ✔ is close to its equator.
    [Show full text]
  • 1 Archives of Natural History, 47, 147-165. Accepted Version. Robert
    Archives of Natural History, 47, 147-165. Accepted version. Robert McCormick’s geological collections from Antarctica and the Southern Ocean, 1839–1843 PHILIP STONE British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK (e-mail: [email protected]) ABSTRACT: Robert McCormick (1800–1890) took part in three mid-nineteenth- century British Polar expeditions, two to the Arctic and one to the Antarctic. The latter, from 1839 to 1843 and led by James Clark Ross, is the best known. McCormick served as senior surgeon on HMS Erebus and was responsible for the collection of zoological and geological specimens. Despite the novelty and potential scientific importance of these early geological collections from Antarctica and remote islands in the Southern Ocean, they received surprisingly little attention at the time. Ross deposited an official collection with the British Museum in 1844, soon after the expedition’s return, and this was supplemented by McCormick’s personal collection, bequeathed in 1890. McCormick had contributed brief and idiosyncratic geological notes to the expedition report published by Ross in 1847, but it was not until 1899 that an informed description of the Antarctic rocks was published, and only in 1921 were McCormick’s palaeobotanical specimens from Kerguelen examined. His material from other Southern Ocean islands received even less attention; had it been utilized at the time it would have supplemented the better-known collections made by the likes of Charles Darwin. In later life, McCormick became increasingly embittered over the lack of recognition afforded to him for his work in the Polar regions.
    [Show full text]
  • Sedimentary Textures Formed by Aqueous Processes, Erebus Crater, Meridiani Planum, Mars
    Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars J. Grotzinger Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA J. Bell III Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA K. Herkenhoff United States Geological Survey, Flagstaff, Arizona 86001, USA J. Johnson A. Knoll Botanical Museum, Harvard University, Cambridge, Massachusetts 02138, USA E. McCartney Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA S. McLennan Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, USA J. Metz Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA J. Moore National Aeronautics and Space Administration Ames, Space Science Division, Moffett Field, California 94035, USA S. Squyres Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853, USA R. Sullivan O. Ahronson Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA R. Arvidson Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA B. Joliff M. Golombek Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA K. Lewis Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125,
    [Show full text]