The Geometry and Evolution of Catalytic Sites and Metal Binding Sites

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry and Evolution of Catalytic Sites and Metal Binding Sites The geometry and evolution of catalytic sites and metal binding sites. James William Torrance Robinson College, Cambridge European Bioinformatics Institute This dissertation is submitted for the degree of Doctor of Philosophy. March 2008 Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. The length of this dissertation does not exceed the limit specified by the Graduate School of Biological, Medical and Veterinary Sciences. 2 Abstract Analysing the geometry of functional sites in proteins can shed light on the evolution of these functional sites, explore the relationship between active site geometry and chemistry, and work towards methods for predicting protein function from structure. This thesis describes the analysis of manually annotated datasets of catalytic residues, biologically relevant metal binding sites, and catalytic mechanisms. The principal source of data for this thesis was the Catalytic Site Atlas, a database of catalytic sites in proteins of known structure. The author has supervised an expansion of the coverage and level of detail of this database. The expanded database has been analysed to discover trends in the catalytic roles played by residues and cofactors. A comparison of the structures of catalytic sites in homologous enzymes showed that these mostly differ by less than 1 A˚ root mean square deviation, even when the sequence similarity between the proteins is low. As a consequence of this structural conservation, structural templates representing catalytic sites have the potential to succeed at function prediction in cases where methods based on sequence or overall structure fail. Templates were found to discriminate between matches to related proteins and random matches with over 85% sensitivity and predictive accuracy. Templates based on protein backbone positions were found to be more discriminating than those based on sidechain atoms. This approach to analysing structural variation can also be applied to other functional sites in proteins, such as metal binding sites. An analysis of a set of of well-documented structural calcium and zinc binding sites found that, like catalytic sites, these are highly conserved between distant relatives. Structural templates representing these conserved calcium and zinc binding sites were used to search the Protein Data Bank for cases where unrelated proteins have converged upon the same residue selection and geometry for metal 3 binding. This allowed the identification of “archetypal” metal binding sites, which had independently evolved on a number of occasions. Relatives of these metal binding proteins sometimes do not bind metal. For most of the calcium binding sites studied, the lack of metal binding in relatives was due to point mutation of the metal-binding residues, whilst for zinc binding sites, lack of metal binding in relatives always involved more extensive changes. As a complement to the analysis of overall structural variation in catalytic sites de- scribed above, statistics were gathered describing the typical distances and angles of indi- vidual catalytic residues with regard to the substrate and one another. The geometry of residues whose function involves the transfer or sharing of hydrogens was found to closely resemble the geometry of non-catalytic hydrogen bonds. 4 Acknowledgements First of all, thanks are due to my supervisor Janet Thornton. She has kept me focused on the big picture, the positive side, and the schedule. Without her advice and encourage- ment, this thesis would have been a big pile of blank paper sitting inside a printer. I also thank my co-supervisor in the Chemistry Department, John Mitchell, who was always happy to have as much or as little involvement as was necessary at different stages, and who supplied an important chemical perspective. Many people have passed through the Thornton group over the last four years, and all of them have provided some combination of technical advice and/or moral support; those who are named here are just the first among those many. Craig Porter, Gail Bartlett and Alex Gutteridge introduced me to the Catalytic Site Atlas. Jonathan Barker provided assistance with his template matching program Jess, as well as amusement through his mechanical ingenuity and artistic talents. Malcolm MacArthur furnished me with his dataset of metal binding sites, and acted as a patient guide to the world of metallopro- teins. Gemma Holliday explained the workings of the MACiE database, and endured my questions on chemical topics. All of the above, along with Gabby Reeves, James Watson and Roman Laskowski, kindly gave up their time to proofread portions of this thesis. I’m also grateful to the various summer students who suffered under my tutelage. I am indebted to other members of the group for non-academic reasons. My various office-mates down the years tolerated my nervous tics, muttering, and attempts to fill the room with houseplants. Matthew Bashton recklessly offered me a room in his flat despite having previously been my office-mate. Gabby and James dragged me to Steve “drill sergeant” Russen’s circuit training sessions, resulting in the Arnold-Schwarzenegger-like physique that I rejoice in today. Tim Massingham bravely protected me from the goths 5 down at the Kambar. Light relief was provided by an assortment of friends, acquaintances, cronies, hangers- on and ne’er-do-wells, including the EBI PhD student mob, the Robinson PhD student mob, the old York University gang from antediluvian times, and the even older Robinson gang from the times before that. Depeche Mode, Iron Maiden and the Sisters of Mercy permitted me to trade away some of my hearing in order to retain some of my sanity. These bands are fairly unlikely to read this thesis, but I suppose it could help them pass the time on a tour bus. Finally, I’d like to thank my parents. Not only have they been a consistent source of entertainment, education, and spirited yet amicable political debate, they have also borne the brunt of my whingeing with extraordinary patience. 6 Contents 1 Introduction 17 1.1 The role and importance of enzymes . 17 1.1.1 Classifying enzymes . 19 1.1.2 Fundamentals of the thermodynamics of enzymatic catalysis . 21 1.2 Functions of catalytic residues . 22 1.2.1 The definition of a catalytic residue . 23 1.2.2 Roles played by catalytic residues . 24 1.3 Experimentally determining catalytic residues and enzyme mechanisms . 30 1.3.1 Non-structural methods . 31 1.3.2 Protein structure as a source of information on enzymes . 33 1.4 Enzyme evolution . 39 1.4.1 How enzyme function changes as protein sequence diverges . 40 1.4.2 Mechanisms of enzyme evolution . 41 1.4.3 Structural evolution of catalytic sites in enzymes of similar function 44 1.5 Using bioinformatics to predict enzyme function and catalytic residues . 47 1.5.1 Predicting function using sequence homology . 47 1.5.2 Predicting function using protein structure to identify homologues . 50 1.5.3 Recognising distant homologues and cases of convergent evolution using template matching methods . 51 1.5.4 Function prediction using protein structure without identifying ho- mologues . 65 1.5.5 Meta-servers for function prediction . 67 1.6 The structure of this thesis . 68 7 CONTENTS 2 The Catalytic Site Atlas 71 2.1 Introduction . 71 2.2 The Catalytic Site Atlas . 72 2.2.1 Types of entry in the CSA . 72 2.2.2 Outline history of the CSA . 73 2.2.3 CSA annotation . 73 2.2.4 Homologous entries . 77 2.3 Analysis of the contents of the CSA . 79 2.3.1 Coverage growth . 79 2.3.2 Independent evolution of function . 82 2.3.3 Versatile catalytic domains . 83 2.3.4 Nonredundant dataset . 85 2.3.5 Total number of residues . 85 2.3.6 Catalytic residue frequency . 88 2.3.7 Catalytic residue propensity . 93 2.3.8 Nonredundant subset of high-annotation entries . 93 2.3.9 Residue functions . 95 2.3.10 Residue targets . 101 2.3.11 Evidence that residues are catalytic . 102 2.4 Discussion . 105 2.4.1 Growth of the CSA . 105 2.4.2 Independent evolution of function, and versatile domains . 107 2.4.3 Roles of residues and cofactors . 108 3 Using structural templates to recognise catalytic sites and explore their evolution 110 3.1 Introduction . 110 3.2 Results . 112 3.2.1 Dataset . 112 3.2.2 Structural variation of catalytic sites . 114 3.2.3 Family analysis . 127 8 CONTENTS 3.2.4 Library analysis . 136 3.3 Discussion . 140 3.3.1 Structural conservation of active sites and the performance of struc- tural templates . 140 3.3.2 Statistical significance measures . 142 3.4 Methods . 143 3.4.1 Non-redundant set of CSA families . 143 3.4.2 Template generation (Figure 3.14 box 1) . 144 3.4.3 Similarity within template families . 145 3.4.4 Non-redundant PDB subset (Figure 3.14 box 4) . 145 3.4.5 Template matching . 147 3.4.6 Statistical significance of template matches . 147 3.4.7 Setting a threshold (Figure 3.14 box 10) . 148 3.4.8 Definition of statistical terms . 149 3.4.9 Analysing the results of the family and library analyses . 149 4 Using structural templates to analyse zinc and calcium binding sites 150 4.1 Introduction . 150 4.2 Results . 153 4.2.1 Dataset . 153 4.2.2 Structural variation of metal binding sites . 156 4.2.3 Water molecule structural variation compared to that of protein sidechains . 159 4.2.4 Structural template matches . 161 4.2.5 Convergent evolution . 167 4.2.6 Metal loss over evolution . 176 4.2.7 Structural basis and functional consequences of metal loss .
Recommended publications
  • Allosteric Regulation in Drug Design
    Mini Review Curr Trends Biomedical Eng & Biosci Volume 4 Issue 1 - May 2017 Copyright © All rights are reserved by Ashfaq Ur Rehman DOI: 10.19080/CTBEB.2017.04.5555630 Allosteric regulation in drug design Ashfaq Ur Rehman1,2*, Shah Saud3, Nasir Ahmad4, Abdul Wadood2 and R Hamid5 1State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, China 2Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan 3Laboratory of Analytical Biochemistry and Bio separation, Shanghai Jiao Tong University, China 4Department of Chemistry, Islama College University Peshawar, Pakistan 5Department of Bioinformatics, Muhammad Ali Jinnah University Islamabad, Pakistan Submission: May 02, 2017; Published: May 23, 2017 *Corresponding author: Ashfaq Ur Rehman, State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, Tel: ; Fax: 86-21-34204348; Email: Abstract mechanism, which are initiated through attachment of ligand or inhibitors with the protein or enzymes other than active (orthosteric) sites. ThisProtein mini review and enzymes involved play mechanism, significant types roles and in importancebiological processes of allosteric of all regulations living organisms; in drug theirdesign functions process. are regulated through allosteric Keywords: Allosteric, Activator: Drug design Introduction and ultimately cause disease. While various biological processes expressed the control at different points in life time of protein function is pivotal. As all the cell processes are under carful For the survival of all organisms the significance of protein included regulation of gene expression, translation into protein control and if not properly controls this leads to the abnormality through control of activity and at last degradation of protein [1].
    [Show full text]
  • Tyrosine Kinase – Role and Significance in Cancer
    Int. J. Med. Sci. 2004 1(2): 101-115 101 International Journal of Medical Sciences ISSN 1449-1907 www.medsci.org 2004 1(2):101-115 ©2004 Ivyspring International Publisher. All rights reserved Review Tyrosine kinase – Role and significance in Cancer Received: 2004.3.30 Accepted: 2004.5.15 Manash K. Paul and Anup K. Mukhopadhyay Published:2004.6.01 Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali, Punjab, India-160062 Abstract Tyrosine kinases are important mediators of the signaling cascade, determining key roles in diverse biological processes like growth, differentiation, metabolism and apoptosis in response to external and internal stimuli. Recent advances have implicated the role of tyrosine kinases in the pathophysiology of cancer. Though their activity is tightly regulated in normal cells, they may acquire transforming functions due to mutation(s), overexpression and autocrine paracrine stimulation, leading to malignancy. Constitutive oncogenic activation in cancer cells can be blocked by selective tyrosine kinase inhibitors and thus considered as a promising approach for innovative genome based therapeutics. The modes of oncogenic activation and the different approaches for tyrosine kinase inhibition, like small molecule inhibitors, monoclonal antibodies, heat shock proteins, immunoconjugates, antisense and peptide drugs are reviewed in light of the important molecules. As angiogenesis is a major event in cancer growth and proliferation, tyrosine kinase inhibitors as a target for anti-angiogenesis can be aptly applied as a new mode of cancer therapy. The review concludes with a discussion on the application of modern techniques and knowledge of the kinome as means to gear up the tyrosine kinase drug discovery process.
    [Show full text]
  • DNA Breakpoint Assay Reveals a Majority of Gross Duplications Occur in Tandem Reducing VUS Classifications in Breast Cancer Predisposition Genes
    © American College of Medical Genetics and Genomics ARTICLE Corrected: Correction DNA breakpoint assay reveals a majority of gross duplications occur in tandem reducing VUS classifications in breast cancer predisposition genes Marcy E. Richardson, PhD1, Hansook Chong, PhD1, Wenbo Mu, MS1, Blair R. Conner, MS1, Vickie Hsuan, MS1, Sara Willett, MS1, Stephanie Lam, MS1, Pei Tsai, CGMBS, MB (ASCP)1, Tina Pesaran, MS, CGC1, Adam C. Chamberlin, PhD1, Min-Sun Park, PhD1, Phillip Gray, PhD1, Rachid Karam, MD, PhD1 and Aaron Elliott, PhD1 Purpose: Gross duplications are ambiguous in terms of clinical cohort, while the remainder have unknown tandem status. Among interpretation due to the limitations of the detection methods that the tandem gross duplications that were eligible for reclassification, cannot infer their context, namely, whether they occur in tandem or 95% of them were upgraded to pathogenic. are duplicated and inserted elsewhere in the genome. We Conclusion: DBA is a novel, high-throughput, NGS-based method investigated the proportion of gross duplications occurring in that informs the tandem status, and thereby the classification of, tandem in breast cancer predisposition genes with the intent of gross duplications. This method revealed that most gross duplica- informing their classifications. tions in the investigated genes occurred in tandem and resulted in a Methods: The DNA breakpoint assay (DBA) is a custom, paired- pathogenic classification, which helps to secure the necessary end, next-generation sequencing (NGS) method designed to treatment options for their carriers. capture and detect deep-intronic DNA breakpoints in gross duplications in BRCA1, BRCA2, ATM, CDH1, PALB2, and CHEK2. Genetics in Medicine (2019) 21:683–693; https://doi.org/10.1038/s41436- Results: DBA allowed us to ascertain breakpoints for 44 unique 018-0092-7 gross duplications from 147 probands.
    [Show full text]
  • Arginine Kinase: a Crystallographic Investigation of Essential Substrate Structure Shawn A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2006 Arginine Kinase: A Crystallographic Investigation of Essential Substrate Structure Shawn A. (Shawn Adam) Clark Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES ARGININE KINASE; A CRYSTALLOGRAPHIC INVESTIGATION OF ESSENTIAL SUBSTRATE STRUCTURE BY SHAWN A. CLARK A Dissertation submitted to the Department of Chemistry and Biochemistry In partial fulfillment of the requirements for the Degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2006 The members of committee approve the dissertation of Shawn A. Clark defended on 11/2/2006 __________________ Michael Chapman Professor Co-Directing Dissertation __________________ Tim Logan Professor Co-Directing Dissertation __________________ Ross Ellington Outside Committee Member __________________ Al Stiegman Committee Member _________________ Tim Cross Committee Member Approved: ________________________________________ Naresh Dalal, Department Chair, Department of Chemistry & Biochemistry The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS The voyage through academic maturity is full of numerous challenges that present themselves at many levels: physically, mentally, and emotionally. These hurdles can only be overcome with dedication, guidance, patience and above all support. It is for these reasons that I would like to express my sincerest and deepest admiration and love for my family; my wife Bobbi, and my two children Allexis and Brytney. Their encouragement, sacrifice, patience, loving support, and inquisitive nature have been the pillar of my strength, the beacon of my determination, and the spark of my intuition.
    [Show full text]
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • Integrated Computational Approaches and Tools for Allosteric Drug Discovery
    International Journal of Molecular Sciences Review Integrated Computational Approaches and Tools for Allosteric Drug Discovery Olivier Sheik Amamuddy 1 , Wayde Veldman 1 , Colleen Manyumwa 1 , Afrah Khairallah 1 , Steve Agajanian 2, Odeyemi Oluyemi 2, Gennady M. Verkhivker 2,3,* and Özlem Tastan Bishop 1,* 1 Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; [email protected] (O.S.A.); [email protected] (W.V.); [email protected] (C.M.); [email protected] (A.K.) 2 Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; [email protected] (S.A.); [email protected] (O.O.) 3 Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA * Correspondence: [email protected] (G.M.V.); [email protected] (Ö.T.B.); Tel.: +714-516-4586 (G.M.V.); +27-46-603-8072 (Ö.T.B.) Received: 25 December 2019; Accepted: 21 January 2020; Published: 28 January 2020 Abstract: Understanding molecular mechanisms underlying the complexity of allosteric regulation in proteins has attracted considerable attention in drug discovery due to the benefits and versatility of allosteric modulators in providing desirable selectivity against protein targets while minimizing toxicity and other side effects. The proliferation of novel computational approaches for predicting ligand–protein interactions and binding using dynamic and network-centric perspectives has led to new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs. Although no absolute method of experimental and in silico allosteric drug/site discovery exists, current methods are still being improved.
    [Show full text]
  • Kramers' Theory and the Dependence of Enzyme Dynamics on Trehalose
    catalysts Review Kramers’ Theory and the Dependence of Enzyme Dynamics on Trehalose-Mediated Viscosity José G. Sampedro 1,* , Miguel A. Rivera-Moran 1 and Salvador Uribe-Carvajal 2 1 Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí C.P. 78290, Mexico; [email protected] 2 Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico; [email protected] * Correspondence: [email protected]fisica.uaslp.mx; Tel.: +52-(444)-8262-3200 (ext. 5715) Received: 29 April 2020; Accepted: 29 May 2020; Published: 11 June 2020 Abstract: The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
    [Show full text]
  • Product Profiles of Egyptian Henbane Premnaspirodiene
    The Journal of Antibiotics (2016) 69, 524–533 & 2016 Japan Antibiotics Research Association All rights reserved 0021-8820/16 www.nature.com/ja ORIGINAL ARTICLE Biosynthetic potential of sesquiterpene synthases: product profiles of Egyptian Henbane premnaspirodiene synthase and related mutants Hyun Jo Koo1,3, Christopher R Vickery1,2,3,YiXu1, Gordon V Louie1, Paul E O'Maille1, Marianne Bowman1, Charisse M Nartey1, Michael D Burkart2 and Joseph P Noel1 The plant terpene synthase (TPS) family is responsible for the biosynthesis of a variety of terpenoid natural products possessing diverse biological functions. TPSs catalyze the ionization and, most commonly, rearrangement and cyclization of prenyl diphosphate substrates, forming linear and cyclic hydrocarbons. Moreover, a single TPS often produces several minor products in addition to a dominant product. We characterized the catalytic profiles of Hyoscyamus muticus premnaspirodiene synthase (HPS) and compared it with the profile of a closely related TPS, Nicotiana tabacum 5-epi-aristolochene synthase (TEAS). The profiles of two previously studied HPS and TEAS mutants, each containing nine interconverting mutations, dubbed HPS-M9 and TEAS- M9, were also characterized. All four TPSs were compared under varying temperature and pH conditions. In addition, we solved the X-ray crystal structures of TEAS and a TEAS quadruple mutant complexed with substrate and products to gain insight into the enzymatic features modulating product formation. These informative structures, along with product profiles,
    [Show full text]
  • Tepzz¥5Z5 8 a T
    (19) TZZ¥Z___T (11) EP 3 505 181 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.07.2019 Bulletin 2019/27 A61K 38/46 (2006.01) C12N 9/16 (2006.01) (21) Application number: 18248241.4 (22) Date of filing: 28.12.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • DICKSON, Patricia GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Torrance, CA California 90502 (US) PL PT RO RS SE SI SK SM TR • CHOU, Tsui-Fen Designated Extension States: Torrance, CA California 90502 (US) BA ME • EKINS, Sean Designated Validation States: Brooklyn, NY New York 11215 (US) KH MA MD TN • KAN, Shih-Hsin Torrance, CA California 90502 (US) (30) Priority: 28.12.2017 US 201762611472 P • LE, Steven 05.04.2018 US 201815946505 Torrance, CA California 90502 (US) • MOEN, Derek R. (71) Applicants: Torrance, CA California 90502 (US) • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (74) Representative: J A Kemp Torrance, CA 90502 (US) 14 South Square • Phoenix Nest Inc. Gray’s Inn Brooklyn NY 11215 (US) London WC1R 5JJ (GB) (54) PREPARATION OF ENZYME REPLACEMENT THERAPY FOR MUCOPOLYSACCHARIDOSIS IIID (57) The present disclosure relates to compositions for use in a method of treating Sanfilippo syndrome (also known as Sanfilippo disease type D, Sanfilippo D, mu- copolysaccharidosis type IIID, MPS IIID). The method can entail injecting to the spinal fluid of a MPS IIID patient an effective amount of a composition comprising a re- combinant human acetylglucosamine-6-sulfatase (GNS) protein comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1 and having the en- zymatic activity of the human GNS protein.
    [Show full text]
  • Comparative Study of Idursulfase Beta and Idursulfase in Vitro and in Vivo
    Journal of Human Genetics (2017) 62, 167–174 OPEN Official journal of the Japan Society of Human Genetics www.nature.com/jhg ORIGINAL ARTICLE Comparative study of idursulfase beta and idursulfase in vitro and in vivo Chihwa Kim1, Jinwook Seo2, Yokyung Chung2, Hyi-Jeong Ji3, Jaehyeon Lee2, Jongmun Sohn2, Byoungju Lee2 and Eui-cheol Jo1 Hunter syndrome is an X-linked lysosomal storage disease caused by a deficiency in the enzyme iduronate-2-sulfatase (IDS), leading to the accumulation of glycosaminoglycans (GAGs). Two recombinant enzymes, idursulfase and idursulfase beta are currently available for enzyme replacement therapy for Hunter syndrome. These two enzymes exhibited some differences in various clinical parameters in a recent clinical trial. Regarding the similarities and differences of these enzymes, previous research has characterized their biochemical and physicochemical properties. We compared the in vitro and in vivo efficacy of the two enzymes on patient fibroblasts and mouse model. Two enzymes were taken up into the cell and degraded GAGs accumulated in fibroblasts. In vivo studies of two enzymes revealed similar organ distribution and decreased urinary GAGs excretion. Especially, idursulfase beta exhibited enhanced in vitro efficacy for the lower concentration of treatment, in vivo efficacy in the degradation of tissue GAGs and improvement of bones, and revealed lower anti-drug antibody formation. A biochemical analysis showed that both enzymes show largely a similar glycosylation pattern, but the several peaks were different and quantity of aggregates of idursulfase beta was lower. Journal of Human Genetics (2017) 62, 167–174; doi:10.1038/jhg.2016.133; published online 10 November 2016 INTRODUCTION secreted protein and contains eight N-linked glycosylation sites at Mucopolysaccharidosis II (MPS II, Hunter syndrome; OMIM 309900) positions 31, 115, 144, 246, 280, 325, 513 and 537.
    [Show full text]
  • Cutinase Structure, Function and Biocatalytic Applications
    EJB Electronic Journal of Biotechnology ISSN: 0717-345 Vol.1 No.3, Issue of August 15, 1998. © 1998 by Universidad Católica de Valparaíso –- Chile Invited review paper/ Received 20 October, 1998. REVIEW ARTICLE Cutinase structure, function and biocatalytic applications Cristina M. L. Carvalho Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal Maria Raquel Aires-Barros Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal 1 Joaquim M. S. Cabral Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal Tel: + 351.1.8419065 Fax: + 351.1.8419062 E-mail: [email protected] http://www.ist.utl.pt/ This review analyses the role of cutinases in nature and Some microorganisms, including plant pathogens, have their potential biotechnological applications. The been shown to live on cutin as their sole carbon source cloning and expression of a fungal cutinase from (Purdy and Kolattukudy, 1975) and the production of Fusarium solani f. pisi, in Escherichia coli and extracellular cutinolytic enzymes has been presented (Purdy Saccharomyces cerevisiae hosts are described. The three and Kolattukudy, 1975; Lin and Kolattukudy, 1980). dimensional structure of this cutinase is also analysed Cutinases have been purified and characterized from and its function as a lipase discussed and compared with several different sources, mainly fungi (Purdy and other lipases. The biocatalytic applications of cutinase Kolattukudy, 1975 ; Lin and Kolattukudy, 1980; Petersen et are described taking into account the preparation of al., 1997; Dantzig et al., 1986; Murphy et al., 1996) and different cutinase forms and the media where the pollen (Petersen et al., 1997; Sebastian et al., 1987).
    [Show full text]
  • Cutinases from Mycobacterium Tuberculosis
    Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis Luc Dedieu, Carole Serveau-Avesque, Ste´phane Canaan* CNRS - Aix-Marseille Universite´ - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France Abstract The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.
    [Show full text]