RESEARCH ARTICLE A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia Jan-Peter Duda1,2*, Martin J. Van Kranendonk3, Volker Thiel1, Danny Ionescu4, Harald Strauss5, Nadine Schäfer1, Joachim Reitner1,2 1 Department of Geobiology, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany, 2 ‘Origin of Life’ Group, Göttingen Academy of Sciences and Humanities, Theaterstraße 7, 37073, Göttingen, Germany, 3 Australian Centre for Astrobiology and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia, 4 Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany, 5 Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, 48149, Münster, Germany *
[email protected] OPEN ACCESS Citation: Duda J-P, Van Kranendonk MJ, Thiel V, Ionescu D, Strauss H, Schäfer N, et al. (2016) A Rare Abstract Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from Paleoarchean rocks from the Pilbara Craton of Western Australia provide a variety of clues the 3.4 Ga Strelley Pool Formation, Western to the existence of early life on Earth, such as stromatolites, putative microfossils and geo- Australia. PLoS ONE 11(1): e0147629. doi:10.1371/ chemical signatures of microbial activity. However, some of these features have also been journal.pone.0147629 explained by non-biological processes. Further lines of evidence are therefore required to Editor: John M. Senko, The University of Akron, convincingly argue for the presence of microbial life.