Abundance Tomography of Type Ia Supernovae

Total Page:16

File Type:pdf, Size:1020Kb

Abundance Tomography of Type Ia Supernovae Abundance Tomography of Type Ia Supernovae Matthias Stehle Abundance Tomography of Type Ia Supernovae Matthias Stehle Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Matthias Stehle aus Sigmaringen München, 4. November 2004 Erstgutachter: Prof. Dr. A.W.A. Pauldrach Zweitgutachter: Prof. Dr. W. Hillebrandt Tag der mündlichen Prüfung: 22. Dezember 2004 If what one finds is made of pure matter, it will never spoil. And one can always come back. If what you had found was only a moment of light, like the explosion of a star, you would find nothing on your return. But you experienced a light explosion, and that was already worthwhile. Paul Coelho (1947- ), The Alchemist Abstract Many uncertainties about the physics of Type Ia Supernovae have been re- vealed in the recent past, and numerous pieces are puzzled together to achieve a complete description of the phenomenon of thermonuclear explosions in the sky. However, very important parts are still missing. In particular, the concept lacks a proper connection between the various evolutionary steps, namely the progenitor scenario, explosion theory, nucleosynthesis from the burning, and the observations. Early time spectra of Type Ia Supernovae naturally contain in- formation about all of these processes and are at the centre of the entire scenario. Appropriate models of that phase can provide the missing link and improve our understanding of this field enormously. The goal of this thesis is to advance new methods to calculate synthetic spectra in order to extract the information contained in the observations more efficiently. Based on a well established radiation transfer code, a new technique called Abun- dance Tomography is developed to derive the abundance distribution of Type Ia Supernovae ejecta. While previous approaches were limited to the determina- tion of the abundances of specific species in restricted regions of the supernova envelope, here a complete stratified distribution of all major elements is ob- tained. This method is applied to the very well observed normal SN 2002bo. Combining the early spectra with those of the nebular phase leads to a coverage of the entire ejecta from the centre out to the highest velocities. The abundances derived are used to compute a synthetic bolometric light curve to test the radial distribution of Fe group and intermediate-mass elements. The sampling procedure of the incident radiation field at the lower boundary is modified to obtain a better description of the real situation in Type Ia Super- novae. This improves the overall flux distribution significantly, especially in the red part of the spectrum, where almost no real line opacity is found. Synthetic spectra with this new procedure reproduce the observations much more accu- rately, as is shown by models of SN 2002er. Hydrogen lines have never been detected convincingly in Type Ia Supernovae spectra. However, using spectra that were observed more than 10 days before maximum light, it is shown that small amounts of hydrogen in the outer parts of the ejecta can explain high velocity line absorptions, seen rather frequently viii Abstract in various objects, e.g. SN 2002dj, SN 2003du, and SN 1999ee. The hydrogen is not claimed to be primordial to the white dwarf but it is rather the effect of the supernova ejecta interacting with circumstellar material, namely the white dwarf’s accretion disk build up prior to the explosion. Finally, UV spectra of Type Ia Supernovae are discussed. The ability of the Monte Carlo technique to deal naturally with this wavelength region is proven. Applications are presented by modelling spectra of SN 2001ep and SN 2001eh obtained with the Hubble Space Telescope. The results are discussed in the broader context of Type Ia Supernovae physics: What causes the diversity in the nearby sample? What are the progenitors and how does the explosion work? What is the influence on cosmological models? A detailed knowledge of the abundances, their distribution in the Supernova ejecta, and their ultimate causes delivers the key to these fundamental issues. Zusammenfassung Die Entdeckung der Dunklen Energie basiert nicht zuletzt auf der Interpre- tation von Beobachtungen weit entfernter bzw. hoch rotverschobener Super- novae vom Typ Ia (z > 0.1). Gleichwohl steht eine vollständige und konsis- tente Beschreibung des physikalischen Ablaufs thermonuklearer Explosionen, die dem Phänomen der Supernovae Ia zugrunde liegen, immer noch aus. So konnte bislang der Zusammenhang zwischen den einzelnen Entwicklungs- stufen – vom Vorläufersternüber die explosive Nukleosynthese bis hin zur Phase der homologen Expansion – und den Beobachtungen noch nicht hinreichend ge- klärt werden. Die Spektren aus der frühen Phase, d. h. einige Tage nach der Ex- plosion, enthalten wichtige Informationen über diesen Ablauf; deren Interpreta- tion steht damit im Zentrum der derzeitigen Supernova Ia Forschung. Geeignete Modelle zur Erzeugung synthetischer Spektren sind das notwendige Werkzeug, um wesentliche Details der thermonuklearen Explosion zu überprüfen und so eine Möglichkeit zur Quantifizierung der Dunklen Energie bereitzustellen. Ziel dieser Arbeit ist es, mit Hilfe neuer Methoden zur Berechnung synthe- tischer Spektren die in den Beobachtungen enthaltenen Informationen zu ex- trahieren und zu analysieren. Den entscheidenden methodischen Schritt stellt dabei die Entwicklung der Tomographie der Elementhäufigkeiten dar. Als wesentlicher Fortschritt kann die Verteilung der Elemente in der Hülle der Supernovae detailliert untersucht werden. Bisherige Verfahren beschränkten sich hierbei lediglich auf die Bestimmung globaler Häufigkeiten spezieller Ele- mente, während die neue Methode eine vollständige Analyse der radialabhängi- gen Verteilung aller wichtigen Elemente zulässt. Die Ergebnisse einer ersten Anwendung werden für die Supernova 2002bo präsentiert. Dabei wurde die Spektralanalyse der frühen Phase mit den Ergebnissen der Nebelphase kom- biniert, um so eine vollständige Bestimmung der Häufigkeiten – vom innersten Punkt der Hülle bis hin zu den höchsten Radialgeschwindigkeitswerten – zu erhalten. Im nächsten Schritt wurden die Ergebnisse der Häufigkeitsverteilung dazu verwendet, die bolometrische Lichtkurve zu berechnen. Durch den Ver- gleich mit der beobachteten Lichtkurve konnte so die geschichtete Verteilung der Eisengruppen- und mittelschweren Elemente präzise bestätigt werden. Desweiteren wurde das Samplingverfahren zur Berechnung des Strahlungs- feldes im innersten Bereich erheblich verbessert und so modifiziert, dass es den bei Supernovae Ia vorherrschenden physikalischen Bedingungen besser x Zusammenfassung entspricht. Damit konnte die Strahlungsflussverteilung signifikant verbessert werden, was insbesondere im opazitätsarmen roten Bereich des Spektrums von entscheidender Bedeutung ist. Anhand von Modellen zur Supernova 2002er wird ferner gezeigt, dass die auf der neuen Methode basierenden synthetischen Spektren die Beobachtungen in wesentlichen Punkten, wie beispielsweise die dominanten Spektrallinien von S, Si, Ca und Fe, erheblich besser repräsentieren. Ein weiterer für das Gesamtverständnis wichtiger Punkt bezieht sich auf die Frage nach der Wasserstoffhäufigkeit. Bislang konnten in Typ Ia Supernova Spektren keine Wasserstofflinien nachgewiesen werden. Anhand von Spektren, die mehr als 10 Tage vor dem Helligkeitsmaximum aufgenommen wurden, konnten wir jedoch zeigen, dass bislang ungeklärte Linienabsorptionen, haupt- sächlich von Ca und Si, bei sehr hohen Geschwindigkeiten durch kleine Mengen Wasserstoff aus der Akkretionsscheibe erklärt werden können. Dieses Ergebnis birgt erhebliche Implikationen für das Verständnis der Supernova Ia Vorläufer- sterne. Für die Diskussion der Ergebnisse in einem größeren astrophysikalischen Rah- men sind desweiteren folgende Fragestellungen relevant: Was verursacht bei den nahen Objekten das unterschiedliche Verhalten ihrer Lichtkurven? Woraus entstehen sie und wie läuft die Explosion im Detail ab? Welche Konsequenzen hat die präzise Parameterstudie von Supernovae Ia für die Kosmologie? Wie in dieser Arbeit gezeigt wird, liefert die exakte Kenntnis der Häufig- keitsverteilung der Elemente in den Supernovae Ia Hüllen den Schlüssel zur Beantwortung dieser elementaren Fragen. Contents Abstract ix Zusammenfassung xi List of Figures xvi List of Tables xvii 1. Introduction 1 1.1. The importance of Type Ia Supernovae ................ 4 1.1.1. Astrophysical relevance .................... 4 1.1.2. Type Ia Supernovae and cosmology ............. 5 1.2. Objectives of this work ......................... 8 1.3. Organisation of the thesis ....................... 11 2. Observational and theoretical aspects of Type Ia Supernovae 13 2.1. Observational characteristics ..................... 13 2.1.1. Light curves and luminosity ................. 13 2.1.2. Spectra .............................. 18 2.1.3. Supernova Ia rates ....................... 22 2.2. Progenitor scenarios .......................... 22 2.3. Explosion mechanism ......................... 26 3. Radiation transfer methods 29 3.1. The radiative transfer equation .................... 29 3.2. Radiative transfer in SN ejecta ..................... 31 3.3. Numerical approaches to the problem ................ 33 4. The Monte Carlo code 35 4.1. Model supernova envelope ...................... 35 4.1.1. Temperature stratification ................... 36 4.1.2. Method of radiative transfer ................. 37 4.1.3. Ionisation and excitation .................... 38 4.2. Numerical technique
Recommended publications
  • Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 8-9-2016 Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae C. S. Black Dartmouth College R. A. Fesen Dartmouth College J. T. Parrent Harvard-Smithsonian Center for Astrophysics Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Astrophysics and Astronomy Commons Dartmouth Digital Commons Citation Black, C. S.; Fesen, R. A.; and Parrent, J. T., "Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae" (2016). Dartmouth Scholarship. 1806. https://digitalcommons.dartmouth.edu/facoa/1806 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. DRAFT VERSION AUGUST 9, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 PROGRESSIVE RED SHIFTS IN THE LATE-TIME SPECTRA OF TYPE IA SUPERNOVAE C. S. BLACK1 , R. A. FESEN1 , & J. T. PARRENT2 16127 Wilder Lab, Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755 and 2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Draft version August 9, 2016 ABSTRACT We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention was given to nebular features between 4000-6000 Å in terms of temporal changes in width and central wavelength.
    [Show full text]
  • Copyright by Robert Michael Quimby 2006 the Dissertation Committee for Robert Michael Quimby Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Robert Michael Quimby 2006 The Dissertation Committee for Robert Michael Quimby certifies that this is the approved version of the following dissertation: The Texas Supernova Search Committee: J. Craig Wheeler, Supervisor Peter H¨oflich Carl Akerlof Gary Hill Pawan Kumar Edward L. Robinson The Texas Supernova Search by Robert Michael Quimby, A.B., M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2006 Acknowledgments I would like to thank J. Craig Wheeler, Pawan Kumar, Gary Hill, Peter H¨oflich, Rob Robinson and Christopher Gerardy for their support and advice that led to the realization of this project and greatly improved its quality. Carl Akerlof, Don Smith, and Eli Rykoff labored to install and maintain the ROTSE-IIIb telescope with help from David Doss, making this project possi- ble. Finally, I thank Greg Aldering, Saul Perlmutter, Robert Knop, Michael Wood-Vasey, and the Supernova Cosmology Project for lending me their image subtraction code and assisting me with its installation. iv The Texas Supernova Search Publication No. Robert Michael Quimby, Ph.D. The University of Texas at Austin, 2006 Supervisor: J. Craig Wheeler Supernovae (SNe) are popular tools to explore the cosmological expan- sion of the Universe owing to their bright peak magnitudes and reasonably high rates; however, even the relatively homogeneous Type Ia supernovae are not intrinsically perfect standard candles. Their absolute peak brightness must be established by corrections that have been largely empirical.
    [Show full text]
  • On the Progenitors of Type Ia Supernovae
    Physics & Astronomy Faculty Publications Physics and Astronomy 2-21-2018 On the Progenitors of Type Ia Supernovae Mario Livio University of Nevada, Las Vegas; The Weizmann Institute of Science, [email protected] Paolo Mazzali The Weizmann Institute of Science; Liverpool John Moores University Follow this and additional works at: https://digitalscholarship.unlv.edu/physastr_fac_articles Part of the Astrophysics and Astronomy Commons Repository Citation Livio, M., Mazzali, P. (2018). On the Progenitors of Type Ia Supernovae. Physics Reports, 736 1-23. http://dx.doi.org/10.1016/j.physrep.2018.02.002 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Physics & Astronomy Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. On the Progenitors of Type Ia SupernovaeI Mario Livio1,2, Paolo Mazzali2,3 Abstract We review all the models proposed for the progenitor systems of Type Ia super- novae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia).
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Chilean Senate Ratifies Agreement with ESO Riccardo Giacconi, Director General of ESO
    No. 85 – September 1996 Chilean Senate Ratifies Agreement with ESO Riccardo Giacconi, Director General of ESO On 5 September 1996, the Senate within up to 10 per cent of observing government in direct negotiation with of the Republic of Chile (Second time on all present and future ESO the private claimants. Chamber of the Parliament) approved telescopes in Chile. They also will As part of this Agreement ESO will the Interpretative, Supplementary and have membership on all ESO scien- continue and increase its contributions Modifying Agreement to the Conven- tific and technical committees. Chile- to the development of Chilean astrono- tion of 1963, which regulates the rela- an and European scientific communi- my and the educational and cultural tions between the European Southern ties will henceforth share the impor- development of local communities. Observatory and its host country, the tant scientific discoveries which will ESO is indebted to the Government of Republic of Chile. be made with the VLT facility at Cerro Chile and especially to the Minister of Following formal approval by the Paranal. Foreign Relations, Don José Miguel ESO Council, it is expected that in- By this Agreement the ESO regula- Insulza, and all those who have struments of ratification could be ex- tions for local Chilean staff will be worked towards this Agreement and its changed before the end of this year. modified to incorporate the principles ratification by the Chilean Parliament. The completion of this process is a of Chilean legislation regarding collec- I wish also to recognise the contri- reason for great mutual satisfaction tive bargaining and freedom of associ- bution of all those at ESO who played as the new Agreement consolidates ation.
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Dark Matter Thermonuclear Supernova Ignition
    MNRAS 000,1{21 (2019) Preprint 1 January 2020 Compiled using MNRAS LATEX style file v3.0 Dark Matter Thermonuclear Supernova Ignition Heinrich Steigerwald,1? Stefano Profumo,2 Davi Rodrigues,1 Valerio Marra1 1Center for Astrophysics and Cosmology (Cosmo-ufes) & Department of Physics, Federal University of Esp´ırito Santo, Vit´oria, ES, Brazil 2Department of Physics and Santa Cruz Institute for Particle Physics, 1156 High St, University of California, Santa Cruz, CA 95064, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We investigate local environmental effects from dark matter (DM) on thermonuclear supernovae (SNe Ia) using publicly available archival data of 224 low-redshift events, in an attempt to shed light on the SN Ia progenitor systems. SNe Ia are explosions of carbon-oxygen (CO) white dwarfs (WDs) that have recently been shown to explode at sub-Chandrasekhar masses; the ignition mechanism remains, however, unknown. Recently, it has been shown that both weakly interacting massive particles (WIMPs) and macroscopic DM candidates such as primordial black holes (PBHs) are capable of triggering the ignition. Here, we present a method to estimate the DM density and velocity dispersion in the vicinity of SN Ia events and nearby WDs; we argue that (i) WIMP ignition is highly unlikely, and that (ii) DM in the form of PBHs distributed according to a (quasi-) log-normal mass distribution with peak log10¹m0/1gº = 24:9±0:9 and width σ = 3:3 ± 1:0 is consistent with SN Ia data, the nearby population of WDs and roughly consistent with other constraints from the literature.
    [Show full text]
  • Optical and Infrared Observations of SN 2002Dj: Some Possible Common Properties of Fast-Expanding Type Ia Supernovae
    Optical and infrared observations of SN 2002dj: some possible common properties of fast-expanding Type Ia supernovae G. Pignata,1,2 S. Benetti,3 P. A. Mazzali,4,5 R. Kotak,6 F. Patat,7 P. Meikle,8 M. Stehle,4 B. Leibundgut,7 N. B. Suntzeff,9 L. M. Buson,3 E. Cappellaro,3 A. Clocchiatti,2 M. Hamuy,1 J. Maza,1 J. Mendez,10 P. Ruiz-Lapuente,10 M. Salvo,11 B. P. Schmidt,11 M. Turatto3 and W. Hillebrandt4 1Departamento de Astronom´ıa, Universidad de Chile, Casilla 36-D, Santiago, Chile 2Departamento de Astronom´ıa y Astrof´ısica, Pontificia Universidad Catolica´ de Chile, Casilla 306, Santiago 22, Chile 3INAF Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, I-35122 Padova, Italy 4Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei Munchen,¨ Germany 5Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy 6Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN 7European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen,¨ Germany 8Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW 9Department of Physics, Texas A&M University, College Station, TX 77843-4242, USA 10Department of Astronomy, University of Barcelona, Marti i Franques 1, E-08028 Barcelona, Spain 11Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia ABSTRACT As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum.
    [Show full text]
  • Gautham Narayan University of Illinois at Urbana-Champaign T: (309) 531-1810 1002 W.Green St., Rm
    Gautham Narayan University of Illinois at Urbana-Champaign T: (309) 531-1810 1002 W.Green St., Rm. 129 B: [email protected] Urbana, IL 61801 m: http://gnarayan.github.io/ • Observational Cosmology and Cosmography • Time-domain Astrophysics, particularly Transient Phenomena RESEARCH INTERESTS • Wide-field Ultraviolet, Optical and Infrared Surveys • Multi-messenger Astrophysics & Rapid Follow-up Studies • Statistics, Data Science and Machine Learning PROFESSIONAL APPOINTMENTS Current: Assistant Professor, University of Illinois at Urbana-Champaign Aug 2019–present Previous: Lasker Data Science Fellow, Space Telescope Science Institute Jun 2017–Aug 2019 Postdoctoral Fellow, National Optical Astronomy Observatory Jul 2013–Jun 20171 EDUCATION Harvard University Ph.D. Physics, May 2013 Thesis: “Light Curves of Type Ia Supernovae and Cosmological Constraints from the ESSENCE Survey” Adviser: Prof. Christopher W. Stubbs A.M. Physics, May 2007 Illinois Wesleyan University B.S. (Hons) Physics, Summa Cum Laude, May 2005 Thesis: “Photometry of Outer-belt Objects” Adviser: Prof. Linda M. French AWARDS AND GRANTS • 2nd ever recipient of the Barry M. Lasker Data Science Fellowship, STScI, 2017–present • Co-I on several Hubble Space Telescope programs with grants totaling over USD 1M, 2012–present • Co-I, grant for developing ANTARES broker, Heising-Simons Foundation, USD 567,000, 2018 • STScI Director’s Discretionary Funding for student research, USD 2500, 2017–present • LSST Cadence Hackathon, USD 1400, 2018 • Best-in-Show, Art of Planetary Science, Lunar and Planetary Laboratory, U. Arizona, 2015 • Purcell Fellowship, Harvard University, 2005 • Research Honors, Summa Cum Laude, Member of ΦBK, ΦKΦ, IWU, 2005 RESEARCH HISTORY AND SELECTED PUBLICATIONS I work at the intersection of cosmology, astrophysics, and data science.
    [Show full text]
  • Arxiv:2001.00598V2 [Astro-Ph.HE] 7 Jan 2020 Times for Higher Redshift Sne Within a flux-Limited Survey Are Systematically Underestimated
    Draft version January 8, 2020 Typeset using LATEX twocolumn style in AASTeX63 ZTF Early Observations of Type Ia Supernovae II: First Light, the Initial Rise, and Time to Reach Maximum Brightness A. A. Miller,1, 2 Y. Yao,3 M. Bulla,4 C. Pankow,1 E. C. Bellm,5 S. B. Cenko,6, 7 R. Dekany,8 C. Fremling,3 M. J. Graham,9 T. Kupfer,10 R. R. Laher,11 A. A. Mahabal,9, 12 F. J. Masci,11 P. E. Nugent,13, 14 R. Riddle,8 B. Rusholme,11 R. M. Smith,8 D. L. Shupe,11 J. van Roestel,9 and S. R. Kulkarni3 1Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA 2The Adler Planetarium, Chicago, IL 60605, USA 3Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA 4Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden 5DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA 6Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 7Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA 8Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA 9Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 10Kavli Institute for Theoretical Physics, University of California, Santa Barbara,
    [Show full text]
  • Magnetic Fronts in Galaxies A
    Astronomy Reports, Vol. 45, No. 7, 2001, pp. 497–501. Translated from AstronomicheskiÏ Zhurnal, Vol. 78, No. 7, 2001, pp. 579–584. Original Russian Text Copyright © 2001 by Petrov, Sokoloff, Moss. Magnetic Fronts in Galaxies A. P. Petrov1, D. D. Sokoloff 2, and D. L. Moss3 1Russian University of Peoples’ Friendship, Moscow, Russia 2Moscow State University, Moscow, Russia 3University of Manchester, Manchester, England Received October 18, 2000 Abstract—Magnetic-field reversals observed in the Milky Way at one or more Galactocentric radii are inter- preted as long-lived transient structures containing memory of the seed magnetic fields. These magnetic fronts can be described using the so-called no-z approximation for the nonlinear, mean-field dynamo equations, which are the topic of the paper. We obtain asymptotic estimates for the speed of propagation of discontinuities in the solution (internal fronts). These estimates agree well with numerical solutions of the no-z equations, and sup- port our interpretation of the magnetic-field reversals as long-lived transients. © 2001 MAIK “Nauka/Interpe- riodica”. 1. INTRODUCTION Such a discussion is the aim of this paper. Based on our analysis, we demonstrate that estimates for the life- The large-scale magnetic fields of spiral galaxies times of a magnetic front obtained in [3] are robust and appear to result from the action of the galactic dynamo, do not depend on the detailed vertical structure of the driven by the differential rotation of the galactic disk and galaxy. the helicity of the interstellar turbulence. The azimuthal component of the galactic magnetic field is dominant. In the Milky Way, however, the azimuthal component 2.
    [Show full text]