SPECTROSCOPIC OBSERVATIONS of SN 2012Fr: a LUMINOUS, NORMAL TYPE Ia SUPERNOVA with EARLY HIGH-VELOCITY FEATURES and a LATE VELOCITY PLATEAU
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Unusual Spectroscopic Time-Evolution in SN 2012Fr∗
Draft version October 4, 2018 Typeset using LATEX default style in AASTeX62 Investigating the Unusual Spectroscopic Time-Evolution in SN 2012fr∗ Christopher Cain,1, 2, 3 E. Baron,2, 4, 5 M. M. Phillips,6 Carlos Contreras,7, 8 Chris Ashall,9 Maximilian D. Stritzinger,8 Christopher R. Burns,10 Anthony L. Piro,10 Eric Y. Hsiao,9, 7, 8 P. Hoeflich,9 Kevin Krisciunas,11 and Nicholas B. Suntzeff11 1Azusa Pacific University 901 E Alosta Ave, Azusa, California, 91702, USA 2University of Oklahoma 440 W. Brooks, Rm 100, Norman, Oklahoma, 73019, USA 3Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA 4Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany 5Visiting Astronomer, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. 6Las Campanas Observatory, Carnegie Observatories Casilla 601, La Serena, Chile 7Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile 8Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. 9Department of Physics, Florida State University, Tallahassee, FL 32306, USA 10Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 11George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA (Received ; Revised ; Accepted ) Submitted to ApJ ABSTRACT The type Ia supernova (SN) 2012fr displayed an unusual combination of its Si II λλ5972, 6355 fea- tures. This includes the ratio of their pseudo equivalent widths, placing it at the border of the Shallow Silicon (SS) and Core Normal (CN) spectral subtype in the Branch diagram, while the Si IIλ6355 expansion velocities places it as a High-Velocity (HV) object in the Wang et al. -
Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae
Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 8-9-2016 Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae C. S. Black Dartmouth College R. A. Fesen Dartmouth College J. T. Parrent Harvard-Smithsonian Center for Astrophysics Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Astrophysics and Astronomy Commons Dartmouth Digital Commons Citation Black, C. S.; Fesen, R. A.; and Parrent, J. T., "Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae" (2016). Dartmouth Scholarship. 1806. https://digitalcommons.dartmouth.edu/facoa/1806 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. DRAFT VERSION AUGUST 9, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 PROGRESSIVE RED SHIFTS IN THE LATE-TIME SPECTRA OF TYPE IA SUPERNOVAE C. S. BLACK1 , R. A. FESEN1 , & J. T. PARRENT2 16127 Wilder Lab, Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755 and 2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Draft version August 9, 2016 ABSTRACT We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention was given to nebular features between 4000-6000 Å in terms of temporal changes in width and central wavelength. -
Copyright by Robert Michael Quimby 2006 the Dissertation Committee for Robert Michael Quimby Certifies That This Is the Approved Version of the Following Dissertation
Copyright by Robert Michael Quimby 2006 The Dissertation Committee for Robert Michael Quimby certifies that this is the approved version of the following dissertation: The Texas Supernova Search Committee: J. Craig Wheeler, Supervisor Peter H¨oflich Carl Akerlof Gary Hill Pawan Kumar Edward L. Robinson The Texas Supernova Search by Robert Michael Quimby, A.B., M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2006 Acknowledgments I would like to thank J. Craig Wheeler, Pawan Kumar, Gary Hill, Peter H¨oflich, Rob Robinson and Christopher Gerardy for their support and advice that led to the realization of this project and greatly improved its quality. Carl Akerlof, Don Smith, and Eli Rykoff labored to install and maintain the ROTSE-IIIb telescope with help from David Doss, making this project possi- ble. Finally, I thank Greg Aldering, Saul Perlmutter, Robert Knop, Michael Wood-Vasey, and the Supernova Cosmology Project for lending me their image subtraction code and assisting me with its installation. iv The Texas Supernova Search Publication No. Robert Michael Quimby, Ph.D. The University of Texas at Austin, 2006 Supervisor: J. Craig Wheeler Supernovae (SNe) are popular tools to explore the cosmological expan- sion of the Universe owing to their bright peak magnitudes and reasonably high rates; however, even the relatively homogeneous Type Ia supernovae are not intrinsically perfect standard candles. Their absolute peak brightness must be established by corrections that have been largely empirical. -
Curriculum Vitae Avishay Gal-Yam
January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award. -
Supernovae Sparked by Dark Matter in White Dwarfs
Supernovae Sparked By Dark Matter in White Dwarfs Javier F. Acevedog and Joseph Bramanteg;y gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario, K7L 2S8, Canada yPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada November 27, 2019 Abstract It was recently demonstrated that asymmetric dark matter can ignite supernovae by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter accumulated inside a white dwarf and collapsing under its own weight, sheds enough gravitational potential energy through scattering with nuclei, to spark the fusion reactions that precede a Type Ia supernova explosion. In this article we elaborate on this mechanism and use it to place new bounds on interactions between nucleons 6 16 and asymmetric dark matter for masses mX = 10 − 10 GeV. Interestingly, we find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition can proceed through the Hawking evaporation of a small black hole formed by the collapsed dark matter. We also identify how a cold white dwarf's Coulomb crystal structure substantially suppresses dark matter-nuclear scattering at low momentum transfers, which is crucial for calculating the time it takes dark matter to form a black hole. Higgs and vector portal dark matter models that ignite Type Ia supernovae are explored. arXiv:1904.11993v3 [hep-ph] 26 Nov 2019 Contents 1 Introduction 2 2 Dark matter capture, thermalization and collapse in white dwarfs 4 2.1 Dark matter capture . -
Arxiv:1103.2976V1 [Astro-Ph.CO] 15 Mar 2011 – 1 – a 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3 1
arXiv:1103.2976v1 [astro-ph.CO] 15 Mar 2011 – 1 – A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3 1 Adam G. Riess2,3, Lucas Macri4, Stefano Casertano3, Hubert Lampeitl5, Henry C. Ferguson3, Alexei V. Filippenko6, Saurabh W. Jha7, Weidong Li6, and Ryan Chornock8 ABSTRACT We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to determine the Hubble constant from optical and infrared observations of over 600 Cepheid variables in the host galaxies of 8 recent Type Ia supernovae (SNe Ia), which provide the calibration for a magnitude-redshift relation based on 240 SNe Ia. Increased precision over past measurements of the Hubble constant comes from five improvements: (1) more than doubling the number of infrared observations of Cepheids in the nearby SN hosts; (2) increasing the sample size of ideal SN Ia calibrators from six to eight with the addition of SN 2007af and SN 2007sr; (3) increasing by 20% the number of Cepheids with infrared observations in the megamaser host NGC 4258; (4) reducing the difference in the mean metallicity of the Cepheid comparison samples between NGC 4258 and the SN hosts from ∆log [O/H] = 0.08 to 0.05; and (5) calibrating all optical Cepheid colors with a single camera, WFC3, to remove cross-instrument zeropoint errors. The result is a reduction in the uncertainty in H0 due to steps beyond the first rung of the distance ladder from 3.5% to 2.3%. The measurement of H0 via the geometric distance to NGC 4258 is 74.8 3.1 km s−1 Mpc−1, a 4.1% measurement including ± systematic uncertainties. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Virgo the Virgin
Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids. -
How Supernovae Became the Basis of Observational Cosmology
Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012). -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Chilean Senate Ratifies Agreement with ESO Riccardo Giacconi, Director General of ESO
No. 85 – September 1996 Chilean Senate Ratifies Agreement with ESO Riccardo Giacconi, Director General of ESO On 5 September 1996, the Senate within up to 10 per cent of observing government in direct negotiation with of the Republic of Chile (Second time on all present and future ESO the private claimants. Chamber of the Parliament) approved telescopes in Chile. They also will As part of this Agreement ESO will the Interpretative, Supplementary and have membership on all ESO scien- continue and increase its contributions Modifying Agreement to the Conven- tific and technical committees. Chile- to the development of Chilean astrono- tion of 1963, which regulates the rela- an and European scientific communi- my and the educational and cultural tions between the European Southern ties will henceforth share the impor- development of local communities. Observatory and its host country, the tant scientific discoveries which will ESO is indebted to the Government of Republic of Chile. be made with the VLT facility at Cerro Chile and especially to the Minister of Following formal approval by the Paranal. Foreign Relations, Don José Miguel ESO Council, it is expected that in- By this Agreement the ESO regula- Insulza, and all those who have struments of ratification could be ex- tions for local Chilean staff will be worked towards this Agreement and its changed before the end of this year. modified to incorporate the principles ratification by the Chilean Parliament. The completion of this process is a of Chilean legislation regarding collec- I wish also to recognise the contri- reason for great mutual satisfaction tive bargaining and freedom of associ- bution of all those at ESO who played as the new Agreement consolidates ation. -
Asymmetries in Sn 2014J Near Maximum Light Revealed Through Spectropolarimetry
ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Item Type Article Authors Porter, Amber; Leising, Mark D.; Williams, G. Grant; Milne, P. A.; Smith, Paul; Smith, Nathan; Bilinski, Christopher; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C. Citation ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY 2016, 828 (1):24 The Astrophysical Journal DOI 10.3847/0004-637X/828/1/24 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 27/09/2021 22:28:24 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622057 The Astrophysical Journal, 828:24 (12pp), 2016 September 1 doi:10.3847/0004-637X/828/1/24 © 2016. The American Astronomical Society. All rights reserved. ASYMMETRIES IN SN 2014J NEAR MAXIMUM LIGHT REVEALED THROUGH SPECTROPOLARIMETRY Amber L. Porter1, Mark D. Leising1, G. Grant Williams2,3, Peter Milne2, Paul Smith2, Nathan Smith2, Christopher Bilinski2, Jennifer L. Hoffman4, Leah Huk4, and Douglas C. Leonard5 1 Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA; [email protected] 2 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 3 MMT Observatory, P.O. Box 210065, University of Arizona, Tucson, AZ 85721-0065, USA 4 Department of Physics and Astronomy, University of Denver, 2112 East Wesley Avenue, Denver, CO 80208, USA 5 Department of Astronomy, San Diego State University, PA-210, 5500 Campanile Drive, San Diego, CA 92182-1221, USA Received 2016 February 14; revised 2016 May 11; accepted 2016 May 12; published 2016 August 24 ABSTRACT We present spectropolarimetric observations of the nearby Type Ia supernova SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum.