ARTICLE https://doi.org/10.1038/s41467-021-25139-9 OPEN Frustrated self-assembly of non-Euclidean crystals of nanoparticles ✉ Francesco Serafin1, Jun Lu2, Nicholas Kotov 2, Kai Sun 1 & Xiaoming Mao 1 Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple 1234567890():,; building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of com- plex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self- assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observa- tions. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material cap- abilities such as tunable optical activity, essential for multiple emerging technologies. 1 Department of Physics, University of Michigan, Ann Arbor, MI, USA. 2 Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. ✉ email:
[email protected] NATURE COMMUNICATIONS | (2021) 12:4925 | https://doi.org/10.1038/s41467-021-25139-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25139-9 hemically synthesized nanoparticles (NPs) display a great Euclidean 3D space, they can form non-Euclidean crystals in diversity of polyhedral shapes1.