Flower Colours and Pollinators As a Model

Total Page:16

File Type:pdf, Size:1020Kb

Flower Colours and Pollinators As a Model Comparing the efficiency of computational colour constancy algorithms in agent-based simulations: Flower colours and pollinators as a model Samia Faruq Thesis submitted for the degree of Doctor of Philosophy Queen Mary, University Of London 2012 1 Abstract The perceived colour of an object depends on its spectral reflection and spectral composition of the illuminant. Upon illumination change, the light reflected from the object also varies. This results in a different colour sensation if no colour constancy mechanism is available to form consistent representations of colours across various illuminants. We explore various colour constancy mechanisms in an agent-based model of foraging bees selecting flower colour based on reward. The simulations are based on empirically determined spatial distributions of various flower species in different plant communities, their rewards and spectral reflectance properties. Simulated foraging bees memorise the colours of flowers experienced as being most rewarding, and their task is to discriminate against other flower colours with lower rewards, even in the face of changing illumination conditions. The experimental setup of the simulation of bees foraging under different photic environments reveals the performance of various colour constancy mechanisms as well as the selective pressures on flower colour as a result of changing light. We compared the performance of von Kries photoreceptor adaptation and various computational colour constancy models based on the retinex theory with (hypothetical) bees with perfect colour constancy, and with modelled bees with colour blindness. While each individual model generated moderate improvements over a colour-blind bee, the most powerful recovery of reflectance in the face of changing illumination was generated by computational mechanisms that increase perceptual distances between co-occurring colours in the scene. We verified the results of our model using various comparisons between modelled bees’ performance and that predicted by our models, as well as exploring the implications for flower colour distribution in a variety of representative habitats under realistic illumination conditions. 2 Acknowledgements It is my pleasure to thank the tremendous supervision I have received from both Prof. Peter William McOwan and Prof. Lars Chittka. I am very grateful to Peter for stimulating endless inspirational ideas and discussions in my work and providing exceptional support and encouragement throughout my PhD with a lot of patience and belief. The dedication Lars provided as a scientist, an expert and a teacher to supervise me in this PhD has been invaluable. He not only introduced me to the fascinating world of bees, but he pushed me to develop my scientific work, all with an incredible amount of patience. I am very grateful for the knowledge imparted to me by Lars during my time at the bee lab. I'd like to extend my thanks to all those in the Chittka Lab who provided discussions and shared their knowledge at the lab meetings. Including, Steven Le Comber, Adrian Dyer and especially Sarah EJ Arnold with whom I worked with closely on the Floral Reflectance Database in my first few years of the PhD. In the Computer Science department, I had the pleasure to be accompanied by various people on my journey (past and present), the people in ‘RIM’ - Nuzhah Gooda Sahib, Nargis Pauran, people in Theory (with whom I shared my office years with) – Jonathan Heusser, Tom Powell, Tzu-Chun Chen, and also members of the Vision Lab. CS Systems support and their well maintained servers that ran all my experiments and all CS administrative staff, especially Melissa Yeo. I am very grateful for the support of the scholarship I received from EPSRC that made this research possible. In all, I would like to thank the staff at Queen Mary, University of London. I met many wonderful undergraduate, postgraduate/PhD students along with support staff and academic staff. It is impossible to name all - but in this I would like to thank each and every one of you who supported, encouraged, taught or just took the time to talk to me about research, bees and colours. I'd like to extend my thanks to family - my brother Zaheer Ahmed and my sisters Mariam and Kashwar for their continuous advice and support. Above all, I am forever grateful for the enormous effort and sacrifice that my mother Kalsum Bibi and father Mohammed Faruq made to ensure that I received an excellent education. To my parents, I dedicate this thesis. Samia Faruq August 2012 3 Summary of key contributions I outline my contribution to the work conducted and presented as a result of the data and result chapters in this thesis: 1. I developed FReD (Floral Reflectance Database) Version 2.0, an open access database for thousands of flower reflectance spectra, a now well established (and heavily used) resource for evolutionary biologists, pollination ecologists and all scientists interested in signal- received interactions. This was based on a preliminary version of a non-web based database by Sarah Arnold and Lars Chittka. Features of the database are described in Chapter 2 and are available to the public. The database in its present form was fully programmed by me to be later used in modelling bee colour vision and the bee simulations (in Chapter 3, 4, 5, and 6); these include: a. Modelling of flowers under changes of light in the bee colour space, b. Modelling of flowers under assumptions of various receptor spectral sensitivity functions such as the α-band only spectral sensitivity functions and narrowed spectral sensitivity function compared with normal honeybee spectral sensitivity functions – See chapter 3 c. The calculation of perceptual colour shift of flower colours extracted from FReD in the honeybee colour vision model and altered spectral sensitivity of the honeybee described in Appendix I d. The calculation of perceptual colour distances of flower colours in FReD in the bee colour space and altered spectral sensitivity of the honeybee described in Appendix I leading to understanding the relationship between flower colour occurrences and perceptual colour shift in the entire bee colour visual spectrum. e. The development of agent-based modelling with the use of the FReD data to mimic real meadow of flowers leading to understanding the usefulness of colour discrimination under changing illumination compared to perceptual colour shift levels 2. In Chapter 3, I modelled the pattern of perceptual colour shift across the bee colour spectrum under three different illuminations as well as performing analysis of colour shift under altered spectral sensitivity function of the bee. I explored the relationship between perceptual colour shift and colour difference sensitivity in the bee. 3. I modelled an in-silico artificial meadow based on flower distributions of a natural meadow (which consists of five co-occurring flowers based on a field study by Chittka et al, (1997)) 4 in the agent-based simulation environment to measure the performance of the bee-agent based on the amount of nectar collected. In Chapter 4, I analysed this performance against another ideal meadow consisting of flower species with large colour distances between the flower colours under changes of illumination to the extent to which large colour distances between flower colours in a meadow can improve nectar collection under conditions of varying illumination. 4. I developed an algorithm in Mathematica to assign nectar values based on the distribution of real nectar standing crop values to a given flower species that is occurring in the meadow. Nectar standing crop data was collected by K. Pruefert under the Supervision of Prof. Lars Chittka in Germany near Würzburg in 1999. These raw data shown in Appendix III were arranged in a histogram and a log-normal distribution was formed to assign nectar values to flowers in the simulation meadow based on the probability of the distribution of the nectar standing crop values shown in Appendix III. 5. I analysed the performance of a von Kries adaptation mechanism combined with three computational colour constancy mechanisms related to the retinex theory under the agent- based simulation of the honeybee colour vision under varying illumination. I developed the method of using these algorithms in an agent-based model and to apply it into a two- dimensional scene each time the bee moved in the grid of cells, which was the ‘meadow’. The amount of nectar collected in these simulations indicated that performance was best in computational methods of colour constancy when colours in the meadow were distinguishable (i.e. easily discriminable) in the training and testing phase of the simulation. 6. I performed the analysis of the bee-agent model under the natural light changes that affect the performance of the bee, and the affects of a different light condition or flowers in place of the actual conditions found in the Maple forest plant community. Data of the phenology study of the Maple forest plant community were collected by L. Chittka in 1993-4. The reflectance spectra of these flowers come from FReD. 5 Declaration I declare that the work in this thesis is all my own, with the exception of the contributions from others mentioned in the “Summary of key contributions” section. Samia Faruq August 2012 6 Table of Contents ABSTRACT .......................................................................................................................................................... 2 ACKNOWLEDGEMENTS ................................................................................................................................
Recommended publications
  • Pollinators Drive Floral Evolution in an Atlantic Forest Genus Beatriz Neves1,2, Igor M
    Copyedited by: AS AoB PLANTS 2020, Vol. 12, No. 5 doi:10.1093/aobpla/plaa046 Advance Access Publication August 22, 2020 Studies STUDIES Pollinators drive floral evolution in an Atlantic Forest genus Beatriz Neves1,2, Igor M. Kessous1, Ricardo L. Moura1, Dayvid R. Couto1, Camila M. Zanella3, Alexandre Antonelli2,4,5, Christine D. Bacon2,5, Fabiano Salgueiro6 and Andrea F. Costa7*, 1Universidade Federal do Rio de Janeiro, Museu Nacional, Programa de Pós Graduação em Ciências Biológicas (Botânica), Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil, 2Gothenburg Global Biodiversity Centre, Carl Skottsbergs Gata 22B, SE 41319 Gothenburg, Sweden, 3National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB30LE, UK, 4Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK, 5Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, SE 41319 Gothenburg, Sweden, 6Departamento de Botânica, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 22290-240 Rio de Janeiro, RJ, Brazil, 7Departamento de Botânica, Universidade Federal do Rio de Janeiro, Museu Nacional, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil *Corresponding author’s e-mail address: [email protected] Associate Editor: Karina Boege Abstract Pollinators are important drivers of angiosperm diversification at both micro- and macroevolutionary scales. Both hummingbirds and bats pollinate the species-rich and morphologically diverse genus Vriesea across its distribution in the Brazilian Atlantic Forest. Here, we (i) determine if floral traits predict functional groups of pollinators as documented, confirming the pollination syndromes in Vriesea and (ii) test if genetic structure in Vriesea is driven by geography (latitudinal and altitudinal heterogeneity) or ecology (pollination syndromes).
    [Show full text]
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • Globalna Strategija Ohranjanja Rastlinskih
    GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 HORTUS BOTANICUS UNIVERSITATIS LABACENSIS, SLOVENIA INDEX SEMINUM ANNO 2017 COLLECTORUM GLOBALNA STRATEGIJA OHRANJANJA RASTLINSKIH VRST (TOČKA 8) UNIVERSITY BOTANIC GARDENS LJUBLJANA AND GSPC TARGET 8 Recenzenti / Reviewers: Dr. sc. Sanja Kovačić, stručna savjetnica Botanički vrt Biološkog odsjeka Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu muz. svet./ museum councilor/ dr. Nada Praprotnik Naslovnica / Front cover: Semeska banka / Seed bank Foto / Photo: J. Bavcon Foto / Photo: Jože Bavcon, Blanka Ravnjak Urednika / Editors: Jože Bavcon, Blanka Ravnjak Tehnični urednik / Tehnical editor: D. Bavcon Prevod / Translation: GRENS-TIM d.o.o. Elektronska izdaja / E-version Leto izdaje / Year of publication: 2018 Kraj izdaje / Place of publication: Ljubljana Izdal / Published by: Botanični vrt, Oddelek za biologijo, Biotehniška fakulteta UL Ižanska cesta 15, SI-1000 Ljubljana, Slovenija tel.: +386(0) 1 427-12-80, www.botanicni-vrt.si, [email protected] Zanj: znan. svet. dr. Jože Bavcon Botanični vrt je del mreže raziskovalnih infrastrukturnih centrov © Botanični vrt Univerze v Ljubljani / University Botanic Gardens Ljubljana ----------------------------------- Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID=297076224 ISBN 978-961-6822-51-0 (pdf) ----------------------------------- 1 Kazalo / Index Globalna strategija ohranjanja rastlinskih vrst (točka 8)
    [Show full text]
  • Diptera: Syrphidae)
    Eur. J. Entomol. 102: 539–545, 2005 ISSN 1210-5759 Landscape parameters explain the distribution and abundance of Episyrphus balteatus (Diptera: Syrphidae) JEAN-PIERRE SARTHOU1, ANNIE OUIN1, FLORENT ARRIGNON1, GAËL BARREAU2 and BERNARD BOUYJOU1 1Ecole Nationale Supérieure Agronomique de Toulouse, UMR Dynafor, BP 107, F-31326 Auzeville-Tolosane, France; e-mail: [email protected] 212, rue Claude Bizot, F-33170 Gradignan, France Key words. Syrphidae, Episyrphus balteatus, distribution, abundance, seasons, forest edges, landscape Abstract. We studied the importance of forest structure (shape, edge length and orientation) and the crop mosaic (percentage of crops in the total land cover, within 100 and 2000 m from the forests) to the dynamics of an aphidophagous hoverfly Episyrphus bal- teatus. Adults were collected by Malaise traps located within and on the south- and north-facing edges of 54 forests. In winter, E. balteatus was only found on south-facing edges because of the greater insolation and temperature. In summer, it was more abundant on north-facing edges because of the abundant presence of flowers. In spring, more adults were found on long and south-facing edges than on northern edges. The presence of shrubs within 2000 m also positively affected abundance. In autumn, abundance was positively associated with length of the north-facing edge and forest shape. Emergence traps revealed that in southern France, E. bal- teatus may overwinter in the larval or puparial stage in forest edges. Overwintering was earlier reported only in adults. Landscape structure, length of forest edges and probably presence of shrub fallows, influence abundance of Episyrphus balteatus. INTRODUCTION farmed landscape are area, floristic composition and also Because most of the natural enemies of crop pests do the shape of the largest features (Nentwig, 1988; not carry out their complete life cycle in cultivated fields, Molthan, 1990; Thomas et al., 1992).
    [Show full text]
  • Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae)
    plants Article Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae) Paulo Milet-Pinheiro 1,*,† , Pablo Sandro Carvalho Santos 1, Samuel Prieto-Benítez 2,3, Manfred Ayasse 1 and Stefan Dötterl 4 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; [email protected] (P.S.C.S.); [email protected] (M.A.) 2 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, s/n, Móstoles, 28933 Madrid, Spain; [email protected] 3 Ecotoxicology of Air Pollution Group, Environmental Department, CIEMAT, Avda. Complutense, 40, 28040 Madrid, Spain 4 Department of Biosciences, Paris-Lodron-University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected] † Present address: Universidade de Pernambuco, Campus Petrolina, Rodovia BR 203, KM 2, s/n, Petrolina 56328-900, Brazil. Abstract: Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with Citation: Milet-Pinheiro, P.; Santos, the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance P.S.C.; Prieto-Benítez, S.; Ayasse, M.; and scent chemistry.
    [Show full text]
  • Cirsium Vulgare Gewöhnliche Kratzdistel
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Brandes Dietmar_diverse botanische Arbeiten Jahr/Year: 2011 Band/Volume: 111_2011 Autor(en)/Author(s): Brandes Dietmar Artikel/Article: Disteln in Osttirol 1-47 © Dietmar Brandes; download unter http://www.ruderal-vegetation.de/epub/index.html und www.zobodat.at Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Disteln in Osttirol Prof. Dr. Dietmar Brandes 7.10.2011 © Dietmar Brandes; download unter http://www.ruderal-vegetation.de/epub/index.html und www.zobodat.at Disteln • Zu den Arten der Unterfamilie Carduae der Familie Asteraceae gehören weltweit ca. 2.500 Arten (Heywood et al. 2007). Hierzu werden die mehr oder minder bedornten Arten v.a. der Gattungen Carduus, Carlina, Carthamus, Cirsium, Cynara, Echinops, Onopordum und Silybum gerechnet. • Die Distelartigen haben ihr Mannigfaltigkeitszentrum in Zentralasien sowie im angrenzenden Europa. Ihre Bewehrung wird zumeist als Schutz gegen Herbivorenfraß interpretiert. So kommen die meisten Distelarten Osttirols entweder in überweideten Pflanzengesellschaften unterschiedlichster Art oder aber auf Ruderalflächen vor. • Zu den einzelnen Arten werden grundlegende Angaben zur ihrer Ökologie und Phytozönologie gemacht; die meisten Arten wurden in Osttirol am Standort fotografiert. © Dietmar Brandes; download unter http://www.ruderal-vegetation.de/epub/index.html und www.zobodat.at Disteln in Osttirol • Carduus acanthoides, Carduus
    [Show full text]
  • Vercors in Summer
    Vercors in Summer Naturetrek Tour Report 11 - 18 July 2018 Blue Featherlegg by Diane Gee Allium carinatum by Paul Harmes Spotted Fritillary by Paul Harmes Judolia cerambyciformis by Paul Harmes Report and images compiled by Paul Harmes & Pete Stevens – additional image by Diane Gee Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ England T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Vercors in Summer Tour Participants: Paul Harmes & Pete Stevens (Leaders) with 12 Naturetrek clients Day 1 Wednesday 11th July Fly London Heathrow to Lyon – Lans en Vercors Twelve group members met Paul and Pete at Heathrow’s Terminal 3 for the 1.50pm British Airways flight BA362 to Lyon St. Exupery. Upon our arrival, we soon completed passport control and baggage reclaim and made our way out to the arrivals area, before making our way to the bus stop for the bus to the car-rental area to collect the minibuses. With luggage loaded, we boarded the vehicles for the journey to the Vercors region. We drove south-westwards on the A43 and A48 motorways, stopping to buy water at Aire L’Isle d’Abeau service area, before continuing south. We left the motorway at Voreppe, on the outskirts of Grenoble, and made our way, via Sessenage, up onto the Vercors Plateau to our destination, the Hotel Le Val Fleuri at Lans en Vercors. Along the way, we recorded Rook and Starling, neither of which, as yet, occur on the plateau, as well as Grey Heron. At the hotel, our base for the rest of the tour, we were met by our host, Eliane Bonnard.
    [Show full text]
  • Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS Records and Their Diversity Received: 10-05-2019 Accepted: 12-06-2019
    Journal of Entomology and Zoology Studies 2019; 7(4): 965-969 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS records and their diversity Received: 10-05-2019 Accepted: 12-06-2019 Rojeet Thangjam Rojeet Thangjam, Veronica Kadam, Kennedy Ningthoujam and Mareena College of Agriculture, Central Sorokhaibam Agricultural University, Kyrdemkulai, Meghalaya, India Abstract Veronica Kadam Hoverflies, generally known as Syrphid flies belongs to family Syrphidae, which is one of the largest College of Post Graduate Studies families of order Diptera. The adults use to feed on nectar and pollen of many flowering plants and larval in Agricultural Sciences, Umiam stages of some species are predaceous to homopteran insects. The objective of the present investigation (CAU-Imphal) Meghalaya, India was focused on the assessment of the diversity and abundance of hoverfly at Assam Agricultural University, Jorhat, Assam during 2015-16. A total of 225 individual hoverflies were recorded during the Kennedy Ningthoujam study out of which 23 species belonging to 16 genera under 2 sub-families viz., Eristalinae and Syrphinae College of Post Graduate Studies were observed. Among them, ten species viz., Eristalinus tristriatus, Eristalis tenax, Eristalodes paria, in Agricultural Sciences, Umiam (CAU-Imphal) Meghalaya, India Lathyrophthalmus arvorum, Lathyrophthalmus megacephalus, Lathyrophthalmus obliquus, Phytomia errans, Pandasyopthalmus rufocinctus, Metasyrphus bucculatus and Sphaerophoria macrogaster were Mareena Sorokhaibam newly recorded from Assam. Among the species, Episyrphus viridaureus and Lathyrophthalmus College of Agriculture, Central arvorum were found to be the most abundant species with the relative abundance of 16.89 and 10.22% Agricultural University, Imphal, respectively.
    [Show full text]
  • Towards Preserving Threatened Grassland Species and Habitats
    Towards preserving threatened grassland plant species and habitats - seed longevity, seed viability and phylogeography Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von SIMONE B. TAUSCH aus Burghausen im Jahr 2017 II Das Promotionsgesuch wurde eingereicht am: 15.12.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Peter Poschlod Regensburg, den 14.12.2017 Simone B. Tausch III IV Table of contents Chapter 1 General introduction 6 Chapter 2 Towards the origin of Central European grasslands: glacial and postgla- 12 cial history of the Salad Burnet (Sanguisorba minor Scop.) Chapter 3 A habitat-scale study of seed lifespan in artificial conditions 28 examining seed traits Chapter 4 Seed survival in the soil and at artificial storage: Implications for the 42 conservation of calcareous grassland species Chapter 5 How precise can X-ray predict the viability of wild flowering plant seeds? 56 Chapter 6 Seed dispersal in space and time - origin and conservation of calcareous 66 grasslands Summary 70 Zusammenfassung 72 References 74 Danksagung 89 DECLARATION OF MANUSCRIPTS Chapter 2 was published with the thesis’ author as main author: Tausch, S., Leipold, M., Poschlod, P. and Reisch, C. (2017). Molecular markers provide evidence for a broad-fronted recolonisation of the widespread calcareous grassland species Sanguisorba minor from southern and cryptic northern refugia. Plant Biology, 19: 562–570. doi:10.1111/plb.12570. V CHAPTER 1 General introduction THREATENED AND ENDANGERED persal ability (von Blanckenhagen & Poschlod, 2005). But in general, soils of calcareous grasslands exhibit HABITATS low ability to buffer species extinctions by serving as donor (Thompson et al., 1997; Bekker et al., 1998a; Regarding the situation of Europe’s plant species in- Kalamees & Zobel, 1998; Poschlod et al., 1998; Stöck- ventory, Central Europe represents the centre of en- lin & Fischer, 1999; Karlik & Poschlod, 2014).
    [Show full text]
  • Diptera: Micropezidae) Érica Sevilha Harterreiten-Souza1,2, José Roberto Pujol-Luz1, and Edison Ryoiti Sujii2,*
    Influence of various farmland habitats on abundance of Taeniaptera (Diptera: Micropezidae) Érica Sevilha Harterreiten-Souza1,2, José Roberto Pujol-Luz1, and Edison Ryoiti Sujii2,* Abstract Stilt-legged flies play an important ecological role in the process of decomposition of organic matter and, on occasion, in the biological control of insects. Currently, there are 46 known species of Taeniaptera Macquart (Diptera: Micropezidae), and their occurrence is reported in various environments throughout the tropics. In contrast, population information on their temporal and spatial distribution is scarce in areas of the Cerrado biome in Brazil, where habitats are highly disturbed and fragmented by agricultural practices and, therefore, the abundance of the group may change. This study as- sessed abundance of Taeniaptera species in habitats associated with farmland, and determined the change in abundance throughout the year. The stilt- legged flies were sampled in various habitats, namely, organically produced vegetable crops, fallow areas, agroforestry, and native vegetation associated with 4 farms located in the Federal District. In each habitat, one Malaise trap was installed, which remained in place for 72 h, at 14 d intervals, from Mar 2012 to Feb 2013. In total, 486 individuals were collected and identified as members of the speciesT. lasciva (F.), T. annulata (F.), and Taeniaptera sp. The mean abundance of flies was highest in vegetable crops when compared with other habitats, and the abundance was relatively steady throughout the year. Among the habitats sampled, vegetable crop systems were the most suitable habitats for conserving Taeniaptera species. Key Words: micropezids; Taeniaptera lasciva; Cerrado vegetation; organic vegetable crop; abundance Resumen Las moscas de patas largas juegan un papel ecológico importante en el proceso de descomposición de la materia orgánica y, en ocasiones, en el control biológico de insectos.
    [Show full text]
  • Diversity of Flower· Visiting Flies
    Rec. zool. Surv. India 11 0 (Part-2) 95-107, 2010 DIVERSITY OF FLOWER·VISITING FLIES (INSECTA: DIPTERA) IN INDIA AND THEIR ROLE IN POLLINATION BULGANIN MITRA Diptera section, Zoological Survey of India, Kolkata e-mail: [email protected] INTRODUCTION basic data on the flower-visiting flies of India. This Nectar is one of the most important foods for communication has culminated in documenting 116 majority of dipterans with respect to adult energetic dipteran species belonging to 16 families as flower requirements for flight in dispersing, finding mates, visitors and pollinators of 92 plant species (Table-I). mating, and searching sites for oviposition (Larson et DIVERSITY OF FLOWER·VISITING FLIES aI, 2001). The flies therefore spend much of their time Flies are one of the major successors of the insect on flowers. The true flies of late Jurassic period with world, and classified into about 10,000 genera, 150 long mouth parts also support their nectar feeding families, 22-32 superfamilies, 8-10 infraorders and 2 ability. Many species of Diptera visit flowers, and their suborders: Nematocera and Brachycera (Yeates & abundance on plants could indicate their importance Wiegmann, 1999). A preliminary estimate (Buchmann & as pollinators as well as the importance of flowers in Nabhan, 1998) indicates that 14,126 species of Diptera their diet. So knowledge on dipteran flower visitors is are involved in the process of pollination in the tropical required as they perform vital role in pollination. world. Inouye (2001) stated that the diversity of Diptera Very little work has been done on the flower-visiting can rival or exceed of Hymenoptera in tropical areas.
    [Show full text]
  • HOVERFLY NEWSLETTER Dipterists
    HOVERFLY NUMBER 41 NEWSLETTER SPRING 2006 Dipterists Forum ISSN 1358-5029 As a new season begins, no doubt we are all hoping for a more productive recording year than we have had in the last three or so. Despite the frustration of recent seasons it is clear that national and international study of hoverflies is in good health, as witnessed by the success of the Leiden symposium and the Recording Scheme’s report (though the conundrum of the decline in UK records of difficult species is mystifying). New readers may wonder why the list of literature references from page 15 onwards covers publications for the year 2000 only. The reason for this is that for several issues nobody was available to compile these lists. Roger Morris kindly agreed to take on this task and to catch up for the missing years. Each newsletter for the present will include a list covering one complete year of the backlog, and since there are two newsletters per year the backlog will gradually be eliminated. Once again I thank all contributors and I welcome articles for future newsletters; these may be sent as email attachments, typed hard copy, manuscript or even dictated by phone, if you wish. Please do not forget the “Interesting Recent Records” feature, which is rather sparse in this issue. Copy for Hoverfly Newsletter No. 42 (which is expected to be issued with the Autumn 2006 Dipterists Forum Bulletin) should be sent to me: David Iliff, Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email: [email protected], to reach me by 20 June 2006.
    [Show full text]