PLAAF IS NOT INVINCIBLE in TIBET by Gp Capt GS Sharma, VSM (Retd)

Total Page:16

File Type:pdf, Size:1020Kb

PLAAF IS NOT INVINCIBLE in TIBET by Gp Capt GS Sharma, VSM (Retd) PLAAF IS NOT INVINCIBLE IN TIBET By Gp Capt GS Sharma, VSM (Retd) One can not really pinpoint the real reason for the Chinese incursion at multiple locations in Ladakh. There could be several reasons such as; force India to shun improvement of border roads; deny occupation of areas which could possibly be used by India for interference in China Pakistan Economic Corridor (CPEC) a President XI Jinping key BRI project, or occupy Ladakh which it considers as one of the perceived five fingers of its palm (Tibet) and even working towards a strategy to project itself as an undisputed leader of Asia. The strategists also speculate that with intrusions on Indian LAC, China may even be signalling US which sees India as its lynchpin to balance China. Aggression on the India- China borders may even be a sequential next step towards its planned journey for establishing Chinese domination on the world, other being South China sea where it has carried out extensive reclamation of land from Sea and built up military infrastructure with almost no serious challenge posed by the littoral states who also claim the portion of the sea but, do not have the gumption to stand 2 against China. The blame should also land with United states and its allies who have not taken any serious action to challenge Chinese assertiveness in South China Sea. Clearly China is a expansionists power who wants the world to acknowledge its greatness. It often bullies Japan, Vietnam, Philippines and Taiwan by its abominable and aggressive display of strength. Now, China has turned its attention to India with whom it has intentionally kept the border issue unresolved to build up pressures at an opportune time which it perceives has arrived when world including India are preoccupied battling the coronavirus pandemic which originated from China. Coronavirus has ravaged the world economies. Economist have forecasted that India too will suffera negative 4.5% growth. China has chosen this trying time to hackle India on the borders. Deception, concealment and surprise often accompany Chinese actions, it was no different this time too. Despite itself being the victim of coronavirus though on smaller scale (many analysts believe that coronavirus is China’s Bio weapon which escaped inadvertently from Wuhan laboratory), it moved its forces from the ongoing exercise in the TAR region along with Indian Northern border and have intruded at several places in Ladakh region unexpectedly. Surprised though India would prefer to negotiate at the military and diplomatic level and persuade PLA to withdraw and avoid military altercation but, at the same time be prepared to teach China a lesson if war is forced on us. A careful observer would have noticed that China for past few years has been carrying out military exercises in the TAR region. Many times,in past, it had retained military deployment even during the winter seasons as well, probably in an effort to gain all-round operational capability in Tibet. Along with it, there has been substantial increase in transgressions in various sectors on India-China LAC year after year. In some cases, like at 3 Dokalam, the transgression resulted in a prolonged standoff with Indian Army and withdrew after 73 days after hard military and diplomatic negotiations. Thus, Knowing Chinese expansionist mindset, the Chinese transgression in Ladakh is not a matter of surprise. PLAAF Challenge in TAR? Over past few years, we are witness to a significant PLAAF fighter aircraft deployment of the Tibet Autonomous Region. Earlier air fields in the TAR region were activated during the summer months but, for last few years Sukhoi-27 and J-10 fleets are being deployed even during winter months in an effort to gain a year-round capability. Further unlike in 1980-90, the China now has largely a modern air force which is rated second in the world in both qualitatively and in terms of number of combat air aircraft. 4 The side which will present better performance can be surmised only after evaluation and impact of the local factors at the place of deployment? Such as number of the airfields/ staging areas, infrastructure for aircraft operations, combat force that can be deployed, geographic location and topography, availability of sustained logistic support besides the number and quality of the air craft and the training status of the air crew. Air Fields PLAAF is known to have 14 air fields opposite our Northern, Central and Eastern region. However, several civil air fields are being readied in TAR by the PLAAF for its use. The focus is on dual use air fields that can be used by both civil and military. These airstrips would be of use for China only in the case of a conflict with India as the latter is the only potential adversary for China in the region.1 These airfields are at an average height of 4,000 metre. Elevation of the area affects the performance of aircraft. Planes operating out of these heights have to trade-off with fuel and payload. The air ports have unusually long runways 4-5 Km long, necessitated due their high elevation. This feature probably is also meant to cater for continued aircraft operations in case of damage. Opposite Ladakh, Ngari Gunsa a dual-use military and civil airport serving the town of Shiquanhe in Ngari Region can be used for fighter operations. Since the last major standoff between China and India at Doklam in 2017 military presence at the Ngari Gunsa Airport has been expanded and fighters have been stationed. The airport is 200 kilometres from Pangong Tso, Ladakh 1https://www.indiatvnews.com/news/india/chinese-army-building-27-airstrips-in-tibet-raw-report-800.html 5 Hotan, Yarkant and Kashgar are the other air fields North of Ladakh which can be used by PLAAF. Hotan is nearly 390 km far from Leh whereas, Kashgar is further 500Km NW of from Hotan (607 km from Leh). Yarkant lies in between Kashgar and Hotan and is 405 km from Leh. All these could be used by PLAAF for defence of the southern border, primarily the Karakoram Pass to the west and disputed Aksai Chin region. Far location of these airfields naturally will impose limitations in fighter operations by PLAAF. These may also may also serve as bases for bomber operations and large cargo aircraft such as military transport ferrying heavy equipment, artillery and in case of war with India. The air fields are so far off from each other that these cannot mutually support each other which is vital in fighter operations. In case of war with china, it will spread to other areas and not remain restricted to Ladakh region. Compared to the North, the Eastern sector opposite Sikkim and Arunachal Pradesh are better served by air fields. But mutual support to other sectors is not feasible. An open source data indicates that China has 60 Sqns. Not all Chinese sqns can be deployed against India due to the lack of aircraft protection infrastructure at many airfields and also that China cannot deplete all resources from other theatres and are retained to meet any contingency of emerging threats from US and its allies. This threat looks potent nowas US Secretary of States has declared recently on redeployment its forces from the Europe to the Indo-Pacific region to deter China from any mis adventure with India. Its three-carrier task force have already come in the Pacific Ocean after Chinese display of aggression in Ladakh. Opposing PLAAF strength, India has depleted strength of only 30 Sqns. Despite this, IAF still has a largest air force among Asian democracies which will not only match PLAAF but, even can come out a 6 winner.2Pakistan’s current economic situation does not permit it to join in the imbroglio but, being opportunistic PAF may join in to take advantage of situation. In that case, IAF would need to tackle both. Predictably one could expect US to check Pakistani misadventure. Assessment As per an estimate, China has 2100+ fighters and bombers as against India’s 550 but PLAAF can deploy only the limited number of these. A recent Howard Kennedy school study (March 2020) concludes that in the Western theatre command China could deploy a total of 157 fighters and varied types of drones of recce, EW and precision attack class. In that, China has a total of 101, are 4th generation fighters. Against this, India can deploy 122comparable 4th gen aircraft solely directed against China in its total deployment of 270 fighters and 68 ground attack air craft. This deployment is dictated by the number and locations of suitable air fields in the area which can participate in ensuing battle. Unlike China, India is not constrained in operations by the airfields. The Chinese fighters are essentially J-10s, J-11s and SU-27s. Of these, J-10 is comparable to the Mirage 2000 whereas, SU-30MKI superior to all other Chinese fighters deployed in the Western theatre, including the J-11 and Su-27 models. While this may be an estimate in the study but, it does state the facts plausibly. The paper also surmises that higher elevation of these air field will limit the Chinese aircraft ability to carry only their half payload and fuel, unless PLAAF resorts in flight refuelling which as routine is not practicable as refuelers and fighters are vulnerable during refuelling. It clearly means 2https://economictimes.indiatimes.com/news/defence/significant-increase-in-chinese-aircraft-in-tibet- autonomous-region-iaf-chief-b-s-dhanoa/articleshow/63929299.cms?from=mdr 7 that China would need to launch twice the number of sorties to achieve the results as against India which does not suffer this limitation at all.
Recommended publications
  • China Shaping Tibet for Strategic Leverage
    MANEKSHAW PAPER No. 70, 2018 China Shaping Tibet for Strategic Leverage Praggya Surana D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Lt Gen Balraj Nagal ISSN 23939729 D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in CLAWS Army No. 33098 The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think-tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2018, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of the Ministry of Defence (MoD) (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents Introduction 1 1.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • Twenty Million Years of Continuous Deformation Along Thekarakorum Fault, Western Tibet: a Thermochronological Analysis
    Twenty million years of continuous deformation along theKarakorum fault, western Tibet: A thermochronological analysis. Franck Valli, Nicolas Arnaud, Philippe-Hervé Leloup, Edward Sobel, Gweltaz Mahéo, R. Lacassin, Stéphane Guillot, Haibing Li, Paul Tapponnier, Xu Zhiquin To cite this version: Franck Valli, Nicolas Arnaud, Philippe-Hervé Leloup, Edward Sobel, Gweltaz Mahéo, et al.. Twenty million years of continuous deformation along theKarakorum fault, western Tibet: A ther- mochronological analysis.. Tectonics, American Geophysical Union (AGU), 2007, 26, pp.TC4004. 10.1029/2005TC001913. hal-00197561 HAL Id: hal-00197561 https://hal.archives-ouvertes.fr/hal-00197561 Submitted on 17 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 20 million years of continuous deformation along the Karakorum fault, Western Tibet: a thermochronological analysis Franck Valli (1), Nicolas Arnaud (2), Philippe Hervé Leloup (3), Edward R. Sobel (4) Gweltaz Mahéo, (3) Robin Lacassin (1) Stéphane Guillot (5), Haibing Li (6-1) Paul Tapponnier (1), Zhiqin Xu (6) (1) UMR7578-CNRS Institut de Physique du Globe de Paris, 75252, Paris, France, (2) Géosciences Montpellier, Université de Montpellier 2, CNRS UMR5243, 34095, Montpellier, France, (3) UMR5570-CNRS Univ. Claude Bernard, 69622, Villeurbanne, France, (4) Univ.
    [Show full text]
  • The Mystery of the Kailash Trail
    The Mystery of the Kailash Trail Chapter 1 Bharat Bhushan The Mystery of the Kailash Trail Chapter 1 Bharat Bhushan Pre-publication draft manuscript This is not a publication This draft copy is being distributed to invite comments and suggestions Not for sale or distribution Being uploaded or distributed for guidance and suggestions in developing the story All rights reserved. No part of this book may be reproduced or utilised in any form or by any means, electronics or mechanical including photocopying, recording or by any information storage and retrieval system, without permission in writing from the publishers. This is not a publication. This is a pre-publication draft manuscript of a proposed book and is being distributed for editing, comments, critics and suggestions. The distribution is within a limited group of experts, resource persons, people who are familiar with the Kailash region in Tibet, the aspects of the pilgrimage in the various religions and those who are interested in the aspects of development of a story. Those who receive this pre-publication draft manuscript may forward it those who may be able to contribute to the editing and development of the story. There will be errors, mistakes and contextual wrongs galore. Please do not hesitate to point them out and inform the author at [email protected] About the book The oldest mystery known to the Oriental World. It is said that nobody dares to venture out to walk on the Kailash Mountain. And it is also said that those who walked up the mountain, never returned. In all these centuries, they have gone within, never to return.
    [Show full text]
  • The Ali CMB Polarization Telescope
    The Ali CMB Polarization Telescope Maria Salatino Stanford University/KIPAC on behalf of the AliCPT-1 Collaboration Towards Coordination of the European CMB Programme Paris - September 13,1 2019 Outline • The collaboration • The science • The observable sky • The instrument design 2 The AliCPT-1 Collaboration PI Xinmin Zhang US PI Chao-Lin Kuo Collaboration Meeting Beijing, April 12-16 2019 3 The AliCPT-1 Collaboration IHEP pipeline, data analysis, scan strategy, control system, site, mount, test/integration Stanford cryostat receiver, optics/AR, focal plane module NAOC logistics, site NIST det arrays and modules, feedhorns and readout components ASU LNAs, cryogenic harness, readout electronics NTU scan strategy, calibration CNRS science, data analysis Jacques Delabrouille USTC CMB science SJTU foregrounds, cross-correlations BNU foregrounds, lensing 4 AliCPT-1 in a nutshell • 72cm aperture, FOV 20.8° (4-7det tiles) FOV 33.4° (19det tiles) • 95/150GHz, 27/19% bandwidth • 19’ and 11’ • 1704 pol-sensitive, optical dichroich TESes per tile • 280mK, NEP 3-5~10-17W/sqrt(Hz) • 4 detector modules • Cryostat and optics: up to 19 det modules • Forebaffle design: up to 7 det modules • scanning in azimuth at constant elevation • (45°-70°) elevation range • up to 4°/s scanning speed • Instrument design heritage BICEP3 5 Ahmed Z. et al., SPIE 2014 AliCPT-1 in a nutshell • 72cm aperture, FOV 20.8° (4-7det tiles) FOV 33.4° (19det tiles) • 95/150GHz, 27/19% bandwidth • 19’ and 11’ • 1704 pol-sensitive, optical dichroich TESes per tile • 280mK, NEP 3-5~10-17W/sqrt(Hz) • 4 detector modules • Cryostat and optics: up to 19 det modules • Forebaffle design: up to 7 det modules • scanning in azimuth at constant elevation • (45°-70°) elevation range • up to 4°/s scanning speed • Instrument design heritage BICEP3 6 Ahmed Z.
    [Show full text]
  • AUGUST 2020 Health Code App for Foreigners
    CHINESE CHURCH SUPPORT MINISTRIES CHINA PRAYER LETTER AUGUST 2020 Health Code App for Foreigners Even though a normalcy has returned to most aspects of life in China after COVID-19, some residues of the pandemic’s safety checks and controls remain in place and it seems people accept them as being here to stay. For those that want to access public transport, hotels, shops, restaurants, supermarkets, residential compounds or other public In locations, there are mandatory requirements this to check temperatures and use health apps, or scan QR codes to prove travel history. issue Many locations are also increasingly requiring Health Code App use of ‘health kit code’ apps to demonstrate a for Foreigners person's health condition and travel history. Ngari Prefecture After their initial introduction, health – In Transition apps were quickly updated to allow users to query the health status Ngari Tibetan Relocations of young or elderly family Eziza's Choice members who could not use The Long Walk Seeking to serve, strengthen and support the church and the people of China smartphones. Soon after, a version of whereabouts for the last 14 days and the app came out allowing foreigners whether you’ve had any COVID-19 to also use the app by logging in symptoms. with their passport. However, some foreigners could not register using a The Health Code Traveller Version health app apparently because their app, and its mini programs, offer an English names were too long. English-language interface and the same color-code system as used by On July 1, 2020, China released a Health Chinese locals.
    [Show full text]
  • Late Paleozoic and Mesozoic Evolution of the Lhasa Terrane in the Xainza MARK Area of Southern Tibet
    Tectonophysics 721 (2017) 415–434 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza MARK area of southern Tibet ⁎ Suoya Fana,b, , Lin Dinga, Michael A. Murphyb, Wei Yaoa, An Yinc a Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China b Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA c Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA ARTICLE INFO ABSTRACT Keywords: Models for the Mesozoic growth of the Tibetan plateau describe closure of the Bangong Ocean resulting in Lhasa terrane accretion of the Lhasa terrane to the Qiangtang terrane along the Bangong-Nuijiang suture zone (BNSZ). Shortening However, a more complex history is suggested by studies of ophiolitic melanges south of the BNSZ “within” the Foreland basin Lhasa terrane. One such mélange belt is the Shiquanhe-Namu Co mélange zone (SNMZ) that is coincident with Suture zone the Geren Co-Namu Co thrust (GNT). To better understand the structure, age, and provenance of rocks exposed Provenance along the SNMZ we conducted geologic mapping, sandstone petrography, and U-Pb zircon geochronology of Geochronology rocks straddling the SNMZ. The GNT is north-directed and places Paleozoic strata against the Yongzhu ophiolite and Cretaceous strata along strike. A gabbro in the Yongzhu ophiolite yielded a U-Pb zircon age of 153 Ma. Detrital zircon age data from Permian rocks in the hanging wall suggests that the Lhasa terrane has affinity with the Himalaya and Qiangtang, rather than northwest Australia.
    [Show full text]
  • Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope∗
    Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope∗ Hong Li1, Si-Yu Li1, Yang Liu2;3, Yong-Ping Li2;3, Yifu Cai4, Mingzhe Li5, Gong-Bo Zhao6;7, Cong-Zhan Liu1, Zheng-Wei Li1, He Xu1, Di Wu1, Yong-Jie Zhang1, Zu-Hui Fan8, Yong-Qiang Yao6, Chao-Lin Kuo 9, Fang-Jun Lu1 and Xinmin Zhang2;3 1Key Laboratory of Particle Astrophysics, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China 2Theoretical Physics Division, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China 3University of Chinese Academy of Sciences, Beijing, China 4CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China 5Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China 6National Astronomical Observatories, Chinese Academy of Science, Jia 20, Datun Road, Chaoyang District, Beijing 100012, P.R.China 7Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX, UK 8Department of Astronomy, School of Physics, Peking University, Beijing 100871, China and 9Physics Department, Stanford University, 385 Via Pueblo Mall, Stanford, CA 94305, USA In this paper, we will give a general introduction to the project of Ali CMB Polarization Telescope (AliCPT), which is a Sino-US joint project led by the Institute of High Energy Physics (IHEP) and involves many different institutes in China. It is the first ground-based cosmic microwave background (CMB) polarization experiment in China and an integral part of China's Gravitational Waves Program.
    [Show full text]
  • RESEARCH New Biostratigraphic Evidence of Late Permian to Late
    RESEARCH New biostratigraphic evidence of Late Permian to Late Triassic deposits from Central Tibet and their paleogeographic implications Gui-chun Wu1,*, Zhan-sheng Ji2, Wei-hua Liao3, and Jian-xin Yao1 1KEY LABORATORY OF STRATIGRAPHY AND PALAEONTOLOGY, MINISTRY OF LAND AND RESOURCES, INSTITUTE OF GEOLOGY, CHINESE ACADEMY OF GEOLOGICAL SCIENCES, BEIJING 100037, CHINA 2CHINESE ACADEMY OF GEOLOGICAL SCIENCES, BEIJING 100037, CHINA 3NANJING INSTITUTE OF GEOLOGY AND PALAEONTOLOGY, CHINESE ACADEMY OF SCIENCES, NANJING, 210008, CHINA ABSTRACT Triassic deposits in the Bangong-Nujiang Suture Zone are important for understanding its tectonic nature and evolutionary history, but have not been systematically studied due to a lack of biostratigraphic data. For a long time, the Upper Triassic Quehala Group featuring clasolite has been regarded as the only rocky unit. In recent years, the silicite-dominated Gajia Formation that bears radiolarian fossils was suggested to represent Ladinian to Carnian deposits. The Upper Permian and Lower Triassic rocks have never been excavated and thus are considered to be absent. This research, however, reveals that fossils aged from the Late Permian to Anisian of the Middle Trias- sic and Norian of the Late Triassic have been preserved in the central Bangong-Nujiang Suture Zone, which provides evidence of Upper Permian to early Middle Triassic deposits and provides new insights on the Upper Triassic strata as well. A new Triassic strata succes- sion is thus proposed for the Bangong-Nujiang Suture Zone, and it demonstrates great similarities with those from Lhasa to the south and Qiangtang to the north. Therefore, we deduce that the Bangong-Nujiang Suture Zone was under a similar depositional setting as its two adjacent terranes, and it was likely a carbonate platform background because limestones were predominant across the Triassic.
    [Show full text]
  • STEFAN LOOSE TRAVEL HANDBÜCHER N TIBET 0 300 Km
    54 Karten und Pläne I Stopover-Ziele in China l Highlights I Reiserouten fair und grün reisen l Budget-Tipps TIBET STEFAN LOOSE TRAVEL HANDBÜCHER N TIBET 0 300 km Ruoqiang 11 Tsaparang XINJIANG Eindrucksvolles Zeugnis des alten 13 Riwoche Tsuglagkhang Guge-Königreichs S. 291 1 Jokhang in Lhasa Außergewöhnliches, festungsähnliches Der bedeutendste Pilgertempel Kloster im alten Kham S. 314 T Tibets S. 151 a k l Quiemo Ganden QINGHAI Hotan a m 3 a k a e Grandioses Gelugpa-Kloster hoch n - W ü s t 2 Potala-Palast in Lhasa über dem Kyi-Chu-Tal S. 191 Der prachtvolle Winterpalast 10 KailashYutian des Dalai Lama S. 156 Delingha Der heiligste aller heiligen Ulan Berge S. 279 Golmud Nam Tso 4 K Der höchstgelegene Salzsee u n l u n - der Welt S. 201 K e t t e AKSAI M t . K u k u 4772 s h i r i Khunu La CHIN 8 Tashilhunpo in Shigatse Chumarhe 12 Basum Tso (Draksum Tso) Das größte aktive Kloster Alpiner See inmitten grüner n Tibets S. 247 Fung´go La Wälder S. 304 a 5010 h Ch B um a S a y rh a e n n k l u Marchudram Babtshug a u n D r a K a n Gyelje Podrang - K Pangong Changtang g l e t Tso a Tomä t e ( T a Jekundo Rutok ALI Qinghai-Tibet- n g g In d u u Gomo Plateau l a Sershül s Dorsedong S h Gar/Ali/ Tso a n SICHUAN Shiquanhe 5206 Tanggula-Pass ) Jinsha Jiang Tsaka G TIBET (Yangzi) j Oma Sharda e Gegye/ l a t Gertse/Luma Ringbo NAGCHU u Napuk Amdo S n Namru g Tso Nyanrong Dege/Derge Tongtso Ngochu Nak Bachen/Drachen Tsarang d Sog Gyamda Tsada/Tholing i Ngangla Nyima Serling Tso Tsaparang s Bangoin Driru/Biru Tengchen e Ringtsho Chamdo Montser (Palgon) - Nagchu Riwoche Gonjo (Akar) Mt.
    [Show full text]
  • Status of the Tibetan Plateau Observatory (Tibet-Obs) and a 10
    Discussions https://doi.org/10.5194/essd-2020-209 Earth System Preprint. Discussion started: 16 October 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data 1 Status of the Tibetan Plateau observatory (Tibet-Obs) and a 2 10-year (2009-2019) surface soil moisture dataset 3 Pei Zhang1,2, Donghai Zheng2, Rogier van der Velde1, Jun Wen3, Yijian Zeng1, Xin Wang4, 4 Zuoliang Wang4, Jiali Chen2,5, Zhongbo Su1 5 1Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, 6 7514AE, the Netherlands 7 2National Tibetan Plateau Data Center, Key Laboratory of Tibetan Environmental Changes and Land Surface 8 Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China 9 3College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, 10 China 11 4Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, 12 China 13 5College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China 14 15 Correspondence to: Donghai Zheng ([email protected]), Z. (Bob) Su ([email protected]) 16 Abstract. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) 17 was established ten years ago, which has been widely used to calibrate/validate satellite- and model-based 18 soil moisture (SM) products for their applications to the Tibetan Plateau (TP). This paper reports on the status 19 of the Tibet-Obs and presents a 10-year (2009-2019) surface SM dataset produced based on in situ 20 measurements taken at a depth of 5 cm collected from the Tibet-Obs that consists of three regional-scale SM 21 monitoring networks, i.e.
    [Show full text]
  • Tibet-Travel-Guide-Tibet-Vista.Pdf
    is located in southwest China with Tibetans as the main local inhabitants. It is Tibet situated on the Qinghai-Tibet Plateau, which is called the "roof of the world". Tibet fascinates tourists from home and abroad with its grandiose natural scenery, vast plateau landscape, charming holy mountains and sacred lakes, numerous ancient architectures and unique folk cultures, and the wonders created by the industrious and brave people of various nationalities in Tibet in the course of building their homeland. Tibet is not only a place that many Chinese and foreigners are eager to visit, but also a "paradise" for photographers. Top Spots of Tibet Catalog Lhasa Before you go The Spiritual and Political Capital of Tibet. 02 Best time to Go 03 Why Travel to Tibet Namtso 04-06 Tibet Permit & Visa “Heavenly Lake” of Tibet, its touching beauty 07 Useful Maps should not be missed by any traveler who visits 08 Getting There & Away Tibet. 09 Luggage Allowance 10-11 Food & Drinking Everest Nature Reserve 12 Shopping Once-in-a-life journey to experience the earth's 13 Where to Stay highest mountain. 14-15 High Altitude Sickness 16-17 Festivals & Events Nyingtri 18 What to Pack „Pearl of Tibet Plateau‟, where the climate is 19 Ethics and Etiquette subtropical, rice and bananas are grown, four 20 Money & Credit Card seasons are seen in the mountains. 21-22 Useful Words & No. 22 Tips for Photographing Tsedang The cradle of Tibetan civilization. Experience Real Tibet Mt. Kailash & Lake Manasarovar 23-25 Top Experiences Ttwo of the most far-flung and legendary travel 26-29 Lhasa & Around destinations in the world.
    [Show full text]