Estimating Fish Species Richness Across Multiple Watersheds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Species Richness and Species Area Relationships in a Florida Sandhill Monica Ruth Downer University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Plant Species Richness and Species Area Relationships in a Florida Sandhill Monica Ruth Downer University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Biology Commons, and the Ecology and Evolutionary Biology Commons Scholar Commons Citation Downer, Monica Ruth, "Plant Species Richness and Species Area Relationships in a Florida Sandhill" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4030 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Plant Species Richness and Species Area Relationships in a Florida Sandhill Community by Monica Ruth Downer A thesis submitted in partial fulfillment Of the requirements for the degree of Master of Science Department of Biology College of Arts and Sciences University of South Florida Major Professor: Gordon A. Fox, Ph.D. Co-Major Professor: Earl D. McCoy, Ph.D. Co-Major Professor: Frederick B. Essig, Ph.D. Date of Approval: March 27, 2012 Keywords: Species area curve, burn regime, rank occurrence, heterogeneity, autocorrelation Copyright © 2012, Monica Ruth Downer ACKNOWLEDGEMENTS I would like to offer special thanks to my major professor, Dr. Gordon A. Fox, for his patience, guidance and many hours devoted to helping me in this endeavor. I would like to thank my committee, Dr. -
Tennessee Fish Species
The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7 -
Species Richness, Species–Area Curves and Simpson's Paradox
Evolutionary Ecology Research, 2000, 2: 791–802 Species richness, species–area curves and Simpson’s paradox Samuel M. Scheiner,1* Stephen B. Cox,2 Michael Willig,2 Gary G. Mittelbach,3 Craig Osenberg4 and Michael Kaspari5 1Department of Life Sciences (2352), Arizona State University West, P.O. Box 37100, Phoenix, AZ 85069, 2Program in Ecology and Conservation Biology, Department of Biological Sciences and The Museum, Texas Tech University, Lubbock, TX 79409, 3W.K. Kellogg Biological Station, 3700 E. Gull Lake Drive, Michigan State University, Hickory Corners, MI 49060, 4Department of Zoology, University of Florida, Gainesville, FL 32611 and 5Department of Zoology, University of Oklahoma, Norman, OK 73019, USA ABSTRACT A key issue in ecology is how patterns of species diversity differ as a function of scale. The scaling function is the species–area curve. The form of the species–area curve results from patterns of environmental heterogeneity and species dispersal, and may be system-specific. A central concern is how, for a given set of species, the species–area curve varies with respect to a third variable, such as latitude or productivity. Critical is whether the relationship is scale-invariant (i.e. the species–area curves for different levels of the third variable are parallel), rank-invariant (i.e. the curves are non-parallel, but non-crossing within the scales of interest) or neither, in which case the qualitative relationship is scale-dependent. This recognition is critical for the development and testing of theories explaining patterns of species richness because different theories have mechanistic bases at different scales of action. -
European Gradients of Resilience in the Face of Climate Extremes
EUROPEAN GRADIENTS OF RESILIENCE IN THE FACE OF CLIMATE EXTREMES POLICY BRIEF Field site in Belgium with rainout shelters deployed in 2013 ©Sigi Berwaers This policy brief is based on the results Extreme weather events and the presence of invasive species can act as of the BiodivERsA-funded project pressures threatening biodiversity, resilience and ecosystem services of semi- ‘SIGNAL’ addressing the interaction of three major research areas, combined natural grasslands and drive them beyond thresholds of system integrity in ecology for the first time: biodiversity (tipping points and regime shifts). On the other hand, biodiversity itself may experiments, climate change research, and invasion research. The project made use buffer ecosystem functioning and services against change. Potential stabilising of coordinated experiments in different mechanisms include species richness, presence of key species such as legumes climates across Europe, thereby increasing and within-species diversity. These potential buffers can be promoted by the scope and relevance of the results. conservation management and policy adjustments. K EY POLICY RECOMMENDATIONS • Local biodiversity should be actively stimulated or preserved across European grasslands in order to increase the stability of ecosystem service provisioning, which is especially relevant as climate extremes are expected to become more frequent and intense. • Adjustment of mowing frequency and cutting height can help maintain or increase biodiversity. • More explicit consideration of within-species diversity is warranted, as this component of biodiversity can contribute to stabilising ecosystem functioning in the face of climate extremes. • Ecosystem responses to climate extremes of similar magnitude can vary significantly between climates and regions, suggesting that targeted policy requires tailor-made impact predictions. -
"Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area. -
Bowfin (Amia Calva)
Indiana Division of Fish and Wildlife’s Animal Information Series Bowfin (Amia calva) Do they have any other names? Other names for the bowfin are dogfish, grindle, grinnel, cypress trout, swamp muskie, black fish, cottonfish, swamp bass, poisson-castor, speckled cat, shoepic or choupic, and beaverfish. Why are they called bowfin? Amia is Greek for “fish” and calva is Greek for “bald or smooth” which refers to the bowfin’s scaleless head. The name “bowfin” refers to the long curved fin on the back of the fish. What do they look like? The bowfin is an elongate and nearly-cylindrical fish with a long dorsal (back) fin that extends from the middle of the back to the tail. The tail fin is rounded and has a black spot on the upper base of the tail. This black spot resembles an eye that predators will mistakenly attack, allowing the bowfin to get away. The back and tail fins are dark- green with darker bands or bars and the lower fins are bright green. The back and upper sides are mottled olive-green with pale green on the belly. The head is without scales but the body is covered in smooth-edged scales. They also have a large mouth with many sharp teeth and each nostril has a prominent barbel-like flap. Photo Credit: Duane Raver, USFWS 2012-MLC Page 1 Bowfin vs. Snakehead Bowfins are often mistaken as snakeheads, which are an exotic fish species native to Africa and Asia. Snakeheads are an aggressive invasive species that have little to no predators outside their native waters. -
Geological Survey of Alabama Biological
GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM BIOLOGICAL ASSESSMENT OF THE LITTLE CHOCTAWHATCHEE RIVER WATERSHED IN ALABAMA OPEN-FILE REPORT 1105 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Choctawhatchee, Pea and Yellow Rivers Watershed Management Authority Tuscaloosa, Alabama 2011 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 3 Study area .......................................................... 3 Methods ............................................................ 3 IBI sample collection ............................................. 3 Habitat measures................................................ 8 Habitat metrics ............................................ 9 IBI metrics and scoring criteria..................................... 12 Results and discussion................................................ 17 Sampling sites and collection results . 17 Relationships between habitat and biological condition . 28 Conclusions ........................................................ 31 References cited..................................................... 33 LIST OF TABLES Table 1. Habitat evaluation form......................................... 10 Table 2. Fish community sampling sites in the Little Choctawhatchee River watershed ................................................... -
* This Is an Excerpt from Protected Animals of Georgia Published By
Comm on Name: BROADSTRIPE SHINER Scientific Name: Pteronotropis euryzonus (Suttkus) Other Commonly Used Names: none Previously Used Scientific Names: Notropis euryzonus Family: Cyprinidae Rarity Ranks: G3/S2 State Legal Status: Rare Federal Legal Status: none Description: The broadstripe shiner is a colorful minnow attaining a maximum total length of about 7 cm (2.8 in). Broadstripe shiners have a deep, compressed body that tapers toward the caudal fin. The bluish gray lateral stripe covers over half the area of the side, extends from the tip of the snout to the base of the caudal fin, and is bordered above by a narrow orange band. The small, wedge-shaped caudal spot is not continuous with the lateral stripe and is bordered above and below by small red spots. The central caudal rays immediately beyond the caudal spot are not pigmented, creating a clear window in the center of the fin. This species has a complete lateral line, 9-11 anal fin rays, and a modal pharyngeal tooth count formula of 2-4-4-2. There are large tubercles present on the ventral surface of the lower jaw (i.e., mandibular tubercles) of males and females. The dorsal and anal fins of males have much longer rays than those of females and the anterior dorsal fin rays of nuptial males extend past the posterior fin rays when the fin is depressed. Breeding males also develop a bright orange caudal fin and a dull orange anal fin. The interradial membranes of the dorsal fin of nuptial males are primarily dark except for orange pigment along the base of the fin and yellow-green pigment on the tips of the fin rays. -
Geological Survey of Alabama Calibration of The
GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist WATER INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 0908 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2009 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 8 IBI sample collection ............................................. 8 Habitat measures............................................... 10 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 15 IBI metrics and scoring criteria..................................... 19 Designation of guilds....................................... 20 Results and discussion................................................ 22 Sampling sites and collection results . 22 Selection and scoring of Southern Plains IBI metrics . 41 1. Number of native species ................................ -
Species Richness and Evolutionary Niche Dynamics: a Spatial Pattern–Oriented Simulation Experiment
vol. 170, no. 4 the american naturalist october 2007 ൴ Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment Thiago Fernando L. V. B. Rangel,1,* Jose´ Alexandre F. Diniz-Filho,2,† and Robert K. Colwell1,‡ 1. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269; 2. Departamento de Biologia Geral, Instituto de Cieˆncias As early as the eighteenth and nineteenth centuries, nat- Biolo´gicas, Universidade Federal de Goia´s, CP 131, 74001-970 uralists described and documented what we today call geo- Goiaˆnia, Goiaˆnia, Brasil graphical gradients in taxon diversity (species richness), Submitted November 27, 2006; Accepted May 14, 2007; especially the general global pattern of increase in species Electronically published August 9, 2007 richness toward warm and wet tropical regions (Whittaker et al. 2001; Hawkins et al. 2003b; Willig et al. 2003; Hil- Online enhancements: appendixes. lebrand 2004). Initial hypotheses explaining this pattern were deduced solely by observing and describing nature and were based on nothing more rigorous than intuitive correspondence between climatic and biological patterns abstract: Evolutionary processes underlying spatial patterns in (Hawkins 2001). Surprisingly, even after 200 years of re- species richness remain largely unexplored, and correlative studies search in biogeography and ecology, the most common lack the theoretical basis to explain these patterns in evolutionary framework used in such investigations still relies on sta- terms. In this study, we develop a spatially explicit simulation tistical measurements of the concordance between the spa- model to evaluate, under a pattern-oriented modeling approach, whether evolutionary niche dynamics (the balance between niche tial patterns in species richness and multiple environmen- conservatism and niche evolution processes) can provide a parsi- tal factors. -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
A List of Common and Scientific Names of Fishes from the United States And
t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.