SEM Studies of Vessels of Saururaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Environmental History of the Middle Rio Grande Basin
United States Department of From the Rio to the Sierra: Agriculture Forest Service An Environmental History of Rocky Mountain Research Station the Middle Rio Grande Basin Fort Collins, Colorado 80526 General Technical Report RMRS-GTR-5 Dan Scurlock i Scurlock, Dan. 1998. From the rio to the sierra: An environmental history of the Middle Rio Grande Basin. General Technical Report RMRS-GTR-5. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 440 p. Abstract Various human groups have greatly affected the processes and evolution of Middle Rio Grande Basin ecosystems, especially riparian zones, from A.D. 1540 to the present. Overgrazing, clear-cutting, irrigation farming, fire suppression, intensive hunting, and introduction of exotic plants have combined with droughts and floods to bring about environmental and associated cultural changes in the Basin. As a result of these changes, public laws were passed and agencies created to rectify or mitigate various environmental problems in the region. Although restoration and remedial programs have improved the overall “health” of Basin ecosystems, most old and new environmental problems persist. Keywords: environmental impact, environmental history, historic climate, historic fauna, historic flora, Rio Grande Publisher’s Note The opinions and recommendations expressed in this report are those of the author and do not necessarily reflect the views of the USDA Forest Service. Mention of trade names does not constitute endorsement or recommendation for use by the Federal Government. The author withheld diacritical marks from the Spanish words in text for consistency with English punctuation. Publisher Rocky Mountain Research Station Fort Collins, Colorado May 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Mcgrath State Beach Plants 2/14/2005 7:53 PM Vascular Plants of Mcgrath State Beach, Ventura County, California by David L
Vascular Plants of McGrath State Beach, Ventura County, California By David L. Magney Scientific Name Common Name Habit Family Abronia maritima Red Sand-verbena PH Nyctaginaceae Abronia umbellata Beach Sand-verbena PH Nyctaginaceae Allenrolfea occidentalis Iodinebush S Chenopodiaceae Amaranthus albus * Prostrate Pigweed AH Amaranthaceae Amblyopappus pusillus Dwarf Coastweed PH Asteraceae Ambrosia chamissonis Beach-bur S Asteraceae Ambrosia psilostachya Western Ragweed PH Asteraceae Amsinckia spectabilis var. spectabilis Seaside Fiddleneck AH Boraginaceae Anagallis arvensis * Scarlet Pimpernel AH Primulaceae Anemopsis californica Yerba Mansa PH Saururaceae Apium graveolens * Wild Celery PH Apiaceae Artemisia biennis Biennial Wormwood BH Asteraceae Artemisia californica California Sagebrush S Asteraceae Artemisia douglasiana Douglas' Sagewort PH Asteraceae Artemisia dracunculus Wormwood PH Asteraceae Artemisia tridentata ssp. tridentata Big Sagebrush S Asteraceae Arundo donax * Giant Reed PG Poaceae Aster subulatus var. ligulatus Annual Water Aster AH Asteraceae Astragalus pycnostachyus ssp. lanosissimus Ventura Marsh Milkvetch PH Fabaceae Atriplex californica California Saltbush PH Chenopodiaceae Atriplex lentiformis ssp. breweri Big Saltbush S Chenopodiaceae Atriplex patula ssp. hastata Arrowleaf Saltbush AH Chenopodiaceae Atriplex patula Spear Saltbush AH Chenopodiaceae Atriplex semibaccata Australian Saltbush PH Chenopodiaceae Atriplex triangularis Spearscale AH Chenopodiaceae Avena barbata * Slender Oat AG Poaceae Avena fatua * Wild -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Phreatophytes
Phreatophytes By T. W. ROBINSON GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1423 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1958 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. Price 40 cents (paper cover) CONTENTS Page Abstract ................................................... 1 Introduction ................................................ 2 Acknowledgments ......................................... 2 Use of ground water by phreatophytes ..................... 3 Evidence ............................................... 3 Effect .................................................. 3 Future considerations ..................................... 7 Definitions ................................................. 9 The hydrologic cycle ........................................ 10 Plants classified as phreatophytes ............................ 12 Scientific and common names .............................. 13 Factors affecting occurrence of phreatophytes ................ 13 Climate .................................................. 14 Depth to water ........................................... 14 Quality of ground water .................................. 15 Factors affecting the use of ground water by phreatophytes...... 16 Climatic conditions ....................................... 17 Depth to water ........................................... 22 Density of growth ....................................... -
Piperaceae) Revealed by Molecules
Annals of Botany 99: 1231–1238, 2007 doi:10.1093/aob/mcm063, available online at www.aob.oxfordjournals.org From Forgotten Taxon to a Missing Link? The Position of the Genus Verhuellia (Piperaceae) Revealed by Molecules S. WANKE1 , L. VANDERSCHAEVE2 ,G.MATHIEU2 ,C.NEINHUIS1 , P. GOETGHEBEUR2 and M. S. SAMAIN2,* 1Technische Universita¨t Dresden, Institut fu¨r Botanik, D-01062 Dresden, Germany and 2Ghent University, Department of Biology, Research Group Spermatophytes, B-9000 Ghent, Belgium Downloaded from https://academic.oup.com/aob/article/99/6/1231/2769300 by guest on 28 September 2021 Received: 6 December 2006 Returned for revision: 22 January 2007 Accepted: 12 February 2007 † Background and Aims The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. † Methods Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states. -
Cultivation of Anemopsis Californica Under Small-Scale Grower Conditions in Northern New Mexico Research Report 758 Charles A
Cultivation of Anemopsis californica under small-scale grower conditions in northern New Mexico Research Report 758 Charles A. Martin and Robert Steiner1 Agricultural Experiment Station • College of Agriculture and Home Economics ABSTRACT ceous perennial with reputed medicinal properties Anemopsis californica (Nutt.) Hook. & Arn. was native to riparian habitats of northern Mexico and cultivated in upland irrigated felds and in a ripar- the southwestern United States. Called by vari- ian area using techniques typical to small-scale ous names including yerba del manso, manso, yerba growers in the American Southwest. Research was mansa, lizard-tail, and swamp root (Kress, 2006), it carried out in the high-altitude, semi-arid environ- has traditionally been and continues to be used for ment of northern New Mexico at the Sustainable medicinal and antiseptic purposes by indigenous Agriculture Science Center of New Mexico State and Hispanic cultures in its geographic range. Eth- University in Alcalde, New Mexico, during the nobotanical sources report it being used for the 1998–2000 growing seasons. Dormant crowns treatment of colds, chest congestion, stomach ul- were obtained from native stands in late March of cers, and as a wash for open sores (Bean & Saubel, 1998 and 1999 and transplanted into prepared, 1972; Swank, 1932). Manso extract is also a tradi- furrowed, pre-irrigated seedbeds at two locations, tional treatment for uterine cancer (Artschwager- a sandy loam upland soil and a clay loam riparian Kay, 1996). Recent studies validate the in vitro an- soil, and at two planting arrangements, bed tops timicrobial and anti-cancer properties of Anemopsis (BT) and furrow bottoms (FB). -
Origin Inspection Programs (Food and Agricultural Code, Section 6404)
CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE 110.1 PLANT QUARANTINE MANUAL 5 -01-12 Origin Inspection Programs (Food and Agricultural Code, Section 6404) FLORIDA No Approved Nurseries 110.2 CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE 10-07-03 PLANT QUARANTINE MANUAL CUT FLOWERS INSPECTED AT ORIGIN MAY BE RELEASED The release of plant material without inspection is limited to the following types when from an approved nursery. This approval does not preclude inspection and sampling and/or testing at the discretion of the destination California Agricultural Commissioner, and rejection is required as a consequence of inspection and/or test(s). (Section 6404, Food and Agricultural Code). Hawaii Approved Nurseries, Certificate Number, and Commodities Asia Pacific Flowers, Inc., Hilo, Hawaii (HIOI-HO104) Dendrobium spp. (orchids and leis), Oncidium spp. (orchids). Big Island Floral, Pahoa, Hawaii (HIOI-O0026) No Longer A Participant. Floral Resources, Inc., Hilo, Hawaii (HIOI-H0043) Anthurium spp., Cordyline terminalis (red & green varigated ti). Goble’s Flower Farm, Kula, Hawaii (HIOI-M0076) No Longer A Participant. Gordon’s Nursery, Haleiwa, Hawaii (HIOI-00171) Dendrobium spp. (orchids), Oncidium spp. (orchids), Rumohra (Polystichum) adiantiformis (leather leaf fern from California). Green Point Nurseries, Inc., Hilo, Hawaii (HIOI-HOOO7) Anthurim spp., Cordyline terminalis (green, red, varigated ti). Green Valley Tropical, Punaluu, Hawaii (HIOI-O0136) Alpinia purpurata (red, pink ginger), Etlingera elatior (torch ginger), Zingiber spectabile (shampoo ginger), Costas pulverulentus, C. stenophyllus,Calathea crotalifera, Strelitzia reginae, Heliconia caribaea, H. bihai, H. stricta, H. orthotricha, H. bourgeana, H. indica, H. psittacorum, H. aurentiaca, H. latispatha, H. rostrata, H. pendula, H. chartacea, H. collinsiana, Anthurium andraeanum , Dendrobium spp. -
YERBA MANSA Into a Deep Red-Wine Color and Drank to Alleviate
Plant Guide The bark was also harvested in autumn and boiled YERBA MANSA into a deep red-wine color and drank to alleviate Anemopsis californica (Nutt.) ulcers or applied externally to wash open sores. The Hook. & Arn. Moapa Paiute boiled the leaves in a quantity of water Plant Symbol = ANCA10 and used it as a bath for muscular pains and for sore feet. The Shoshone mashed the roots and boiled Contributed By: USDA NRCS National Plant Data them to make a poultice for swellings, or the Center decoctions used as an antiseptic wash. A tea from the boiled roots can be taken for stomachache or more commonly as a tonic for general debility following colds. The Pima in the Southwest made an infusion of dried roots which was taken for colds. They also chewed the roots and swallowed them or made a decoction of the roots which was taken for coughs. Spanish settlers in California used the plant as a liniment for skin troubles and as a tea for disorders of the blood. Status Please consult the PLANTS Web site and your State Alfred Brousseau Department of Natural Resources for this plant’s © Brother Eric Vogel, St. Mary's College current status and wetland indicator values. @ CalPhotos Description Alternate Names General: Lizard’s Tail Family (Saururaceae). This Bear root common herbaceous perennial has an aromatic, creeping rhizome, which is thick and woody. The Uses flowers do have not true petals, but rather each Ethnobotanic: The root of the plant was used as a flower is subtended by an involucre bract 1-3 cm medicine by many tribes in California, Great Basin, long that is white, often tinged reddish. -
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report
Annotated Checklist of the Vascular Plant Flora of Grand Canyon-Parashant National Monument Phase II Report By Dr. Terri Hildebrand Southern Utah University, Cedar City, UT and Dr. Walter Fertig Moenave Botanical Consulting, Kanab, UT Colorado Plateau Cooperative Ecosystems Studies Unit Agreement # H1200-09-0005 1 May 2012 Prepared for Grand Canyon-Parashant National Monument Southern Utah University National Park Service Mojave Network TABLE OF CONTENTS Page # Introduction . 4 Study Area . 6 History and Setting . 6 Geology and Associated Ecoregions . 6 Soils and Climate . 7 Vegetation . 10 Previous Botanical Studies . 11 Methods . 17 Results . 21 Discussion . 28 Conclusions . 32 Acknowledgments . 33 Literature Cited . 34 Figures Figure 1. Location of Grand Canyon-Parashant National Monument in northern Arizona . 5 Figure 2. Ecoregions and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 8 Figure 3. Soil types and 2010-2011 collection sites in Grand Canyon-Parashant National Monument in northern Arizona . 9 Figure 4. Increase in the number of plant taxa confirmed as present in Grand Canyon- Parashant National Monument by decade, 1900-2011 . 13 Figure 5. Southern Utah University students enrolled in the 2010 Plant Anatomy and Diversity course that collected during the 30 August 2010 experiential learning event . 18 Figure 6. 2010-2011 collection sites and transportation routes in Grand Canyon-Parashant National Monument in northern Arizona . 22 2 TABLE OF CONTENTS Page # Tables Table 1. Chronology of plant-collecting efforts at Grand Canyon-Parashant National Monument . 14 Table 2. Data fields in the annotated checklist of the flora of Grand Canyon-Parashant National Monument (Appendices A, B, C, and D) . -
3-Web BB Plant List
Wild Plants of Big Break Regional Shoreline Grouped by Growth Form Alphabetical by Scientific Name September 5, 2003 Wild Plants of Big Break Regional Shoreline Grouped by Growth Form Alphabetical by Scientific Name This document contains a comprehensive list of the wild plants reported to be found in Big Break Regional Shoreline. The plants are grouped according to their growth form for easy accessibility. These four groups are: Ferns & Horsetails, Grasses & Grasslike, Herbaceous, and Woody. The plants within each group are listed alphabetically by scientific name. Other information on each plant includes the common name, family, whether the plant is native or introduced, and its longevity. For quick reference, the upper left corner of each page displays both the group name (based on growth form) and the genus of the first scientific name. The abbreviations used: Checklist column for marking off the plants you observe Scientific Name According to The Jepson Manual: Higher Plants of California, 1993 Common Name According to Jepson and other references (highly variable) Family The scientific plant family name according to Jepson L Longevity: Annual (a), Biennial (b), Perennial (p), or a combination N/I Native (n) or Introduced (i) according to Jepson The listing of plants included in this document is by no means complete. The intent is to maintain an ongoing inventory to which additional plants can be added over time. Readers are encouraged to report any corrections or additions to this list by emailing the District Botanist (Wilde Legard, [email protected]). This welcomed assistance will help facilitate improved management of the Park District’s natural resources. -
Houttuynia Cordata Thunb
Indian Journal of Natural Products and Resources Vol. 4(4), December 2013, pp. 432-435 Ethnobotanical notes on Houttuynia cordata Thunb. in North-eastern region of India R S Rathi*, Somnath Roy, A K Misra and S K Singh National Bureau of Plant Genetic Resources (NBPGR-ICAR), Regional Station, Umiam-793 103, Meghalaya, India Received 29 August 2012; Accepted 16 May 2013 Houttuynia cordata Thunb. (Family-Saururaceae) is an ethnobotanically important plant of North eastern region of India. It is a potential source of antioxidants and used extensively in treating number of diseases such as cancer, coronary heart disease, diabetes, severe acute respiratory syndrome, blood deficiency, dysentery, etc. This herb is sensitive to severe cold and remains dormant during winter and propagated through rhizomes. It is a good soil binder due to spreading nature of roots and leaves. The herb is generally collected from wild and occasionally cultivated as homestead plant. This has resulted great pressure on the populations occurring in the natural habitats and the plant has become endangered in many parts of North-east India. This calls for sustainable management and conservation of wild and cultivated resources of H. cordata. Keywords: Houttuynia cordata, Saururaceae, Medicinal plant, North-east India. IPC code; Int. cl. (2011.01)−A61K 36/00. Introduction and gather different plants/herbs from the forests and Houttuynia cordata Thunb(a). is one of the use in different ways. The tribes of NE region collect important plant of the family Saururaceae1. It is native H. cordata from the wild habitats both for to mountainous region of Eastern Asia and occurring consumption and for selling in local markets.