Chloroplast Comparative Genomics: Implications for Phylogeny, Evolution, and Biotechnology Christopher Saski Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Chloroplast Comparative Genomics: Implications for Phylogeny, Evolution, and Biotechnology Christopher Saski Clemson University, Csaski@Clemson.Edu Clemson University TigerPrints All Dissertations Dissertations 8-2007 Chloroplast Comparative Genomics: Implications For Phylogeny, Evolution, and Biotechnology Christopher Saski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Genetics Commons Recommended Citation Saski, Christopher, "Chloroplast Comparative Genomics: Implications For Phylogeny, Evolution, and Biotechnology" (2007). All Dissertations. 115. https://tigerprints.clemson.edu/all_dissertations/115 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. CHLOROPLAST COMPARATIVE GENOMICS: IMPLICATIONS FOR PHYLOGENY, EVOLUTION AND BIOTECHNOLOGY A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Genetics by Christopher Alan Saski August 2007 Accepted by: Jeffrey P. Tomkins, Committee Chair Dr. Hong Luo Dr. William R. Marcotte Jr. Dr. Kerry Smith ABSTRACT Lack of complete chloroplast genome sequences is still a limiting factor determining phylogenetic relationships, discerning evolutionary forces, and extending chloroplast genetic engineering to useful crops. Therefore, the chloroplast genomes from six economically important crops were isolated and sequenced. The results will have an impact on chloroplast biology and biotechnology. The complete soybean chloroplast genome was compared to the other completely sequenced legumes, Lotus and Medicago. The rpl22 gene was found to be missing from all three legumes, a very informative phylogenetic marker. There is a single, large inversion changing the gene order in the legumes from the typical order found in Arabidopsis. Detailed analysis of repeat elements within the chloroplast genomes analyzed indicate they may play some functional role in evolution, and that the psbA and rbcL repeats indicate that the loss of an inverted repeat has only occurred once during the evolutionary history of the legumes. Ideal sites for integration of transgenes were also determined. Next, the chloroplast genomes of the agriculturally important solanacaeae crops Solanum lycopersicum and potato were isolated and sequenced. Analysis of the complete chloroplast genome sequences revealed significant insertions and deletions (indels) within certain coding regions. Photosynthesis, RNA, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. The identified repeats characterized across the solanaceae are similar to the legumes, located in the same genes or intergenic regions indicating a possible functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in ii chloroplast genomes. Analysis of RNA editing sites demonstrated they were less common than what was previously observed in tobacco and Atropa, suggesting a loss of editing sites and a possible increase in variation at the RNA level. Finally, the complete chloroplast genome sequences of barley, sorghum, and creeping bentgrass, were identified and compared to six published grass chloroplast genomes to reveal that gene content and order are similar, but two microstructural changes have occurred. First, the expansion of the inverted repeat at the small single copy/inverted repeat boundary that duplicates a portion of the 5’ end of ndhH is restricted to three genera of the subfamily Pooideae (Agrostis, Hordeum, and Triticum). Second, a 6bp deletion in ndhK is shared by creeping bentgrass, barley, rice, and wheat, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis revealed many dispersed repeats shared among the grasses, as well as repeats that flank a major genome rearrangement common only to the grasses suggesting this repeat had a functional role in the genome rearrangement. Examination of simple sequence repeat markers identified 16-21 potential SSRs. Distances based on intergenic spacer regions were analyzed as well as RNA editing sites. Phylogenetic trees based on DNA sequences of 61 protein- coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. iii DEDICATION I dedicate this manuscript to my wife and parents for all their love, support, inspiration, and dedication. iv ACKNOWLEDGMENTS I would like to Acknowledge Dr. Jeff Tomkins as my advisor. I acknowledge Dr. Henry Daniell and Dr. Robert Jansen for insightful discussions, motivation, data interpretation, and for assisting with scope and direction in this study. I would also like to acknowledge my graduate committee; Dr. William R. Marcotte Jr, Dr. Hong Luo, and Dr. Kerry Smith. v TABLE OF CONTENTS Page TITLE PAGE.................................................................................................................... i ABSTRACT ....................................................................................................................... ii DEDICATION................................................................................................................. iv ACKNOWLEDGEMENTS........................................................................................... v LIST OF TABLES............................................................................................................ ix LIST OF FIGURES ......................................................................................................... xi CHAPTER 1. INTRODUCTION ......................................................................................... 1 Endosymbiosis........................................................................................ 1 Chloroplasts and Other Plastid Types ................................................ 4 Gene Transfer......................................................................................... 8 Why do Plastids Have Genomes ......................................................... 8 Phylogenetic Utility of Chloroplast Genomes................................... 9 Chloroplast Molecular Markers............................................................ 12 Plastids and Biotechnology................................................................... 13 2. THE COMPLETE CHLOROPLAST GENOME OF GLYCINE MAX AND COMPARATIVE ANALYSIS WITH OTHER LEGUME GENOMES........................................................................ 16 Introduction............................................................................................ 16 Methodology........................................................................................... 17 DNA Sources.......................................................................................... 17 DNA Sequencing and Data Assembly................................................ 17 Genome Annotation.............................................................................. 18 Molecular Evolutionary Comparisons ................................................ 20 Results...................................................................................................... 20 Size, gene content and organization of the Glycine chloroplast genome..................................................................................................... 20 Comparison of genome organization among legumes and Arabidopsis................................................................................................ 23 vi Table of Contents (Continued) Page Extent of the Inverted Repeat.............................................................. 27 Repeat Analysis....................................................................................... 32 Discussion ............................................................................................... 40 3. COMPLETE CHLOROPLAST GENOME SEQUENCES OF SOLANUM BULBOCASTANUM, SOLANUM LYCOPERSICUM AND COMPARATIVE ANALYSIS WITH OTHER SOLANACEAE GENOMES ............................................ 45 Introduction............................................................................................ 45 Methodology........................................................................................... 47 DNA Sources.......................................................................................... 47 DNA Sequencing and Genome Assembly......................................... 47 Genome Annotation.............................................................................. 47 Molecular Evolutionary Comparisons ................................................ 48 Comparison of Intergenic Regions...................................................... 48 Variations Between Coding Sequences and cDNAs......................... 49 Results...................................................................................................... 49 Size, gene content and organization of Solanum lycopersicum and Solanum bulbocastanum chloroplast......................................................... 50 Gene content and Gene Order ............................................................ 52 Repeat Structure ..................................................................................... 55 Intergenic Spacer Regions....................................................................
Recommended publications
  • Functional Genomics of Phytophthora Infestans Effectors and Solanum Resistance Genes
    Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes Nicolas Champouret Thesis committee Thesis supervisors Prof. dr. Richard G.F. Visser Professor of Plant Breeding Wageningen University Prof. dr. Evert Jacobsen Professor of Plant Breeding Wageningen University Thesis co-supervisor Dr. Vivianne G.A.A. Vleeshouwers Researcher Wageningen University Other members Prof. Dr. Ir. Pierre J. G. M. de Wit, Wageningen University, The Netherlands Prof. Dr. Martien Groenen, Wageningen University, The Netherlands Prof. Dr. Ir. Corné Pieterse, Utrecht University, The Netherlands Dr. Brande Wulff, The Sainsbury Laboratory, Norwich, UK This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. II Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes Nicolas Champouret Thesis submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Wednesday 9 June 2010 at 4 p.m. in the Aula. III Nicolas Champouret Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes. 162 pages Thesis, Wageningen University, Wageningen, NL (2010) With references, with summaries in Dutch and English ISBN 978-90-8585-658-0 IV CONTENTS Abstract VII Chapter 1 1 General introduction Chapter 2 15 Phytophthora infestans Isolates Lacking Class I ipiO Variants Are Virulent on Rpi-blb1 Potato Chapter 3 43 Evolutionary and Functional Analyses Reveal a Diverse Family of R2 Late Blight Resistance Genes in Mexican Solanum Species Chapter 4 75 Diversity of PiAvr2/PexRD11 and R2 gene families underpins co-evolution between Phytophthora infestans and Mexican Solanum species Chapter 5 90 Functional allele-mining with Avr3a reveals active R3a in S.
    [Show full text]
  • Occasional Papers from the Lindley Library © 2011
    Occasional Papers from The RHS Lindley Library IBRARY L INDLEY L , RHS VOLUME FIVE MARCH 2011 Eighteenth-century Science in the Garden Cover illustration: Hill, Vegetable System, vol. 23 (1773) plate 20: Flower-de-luces, or Irises. Left, Iris tuberosa; right, Iris xiphium. Occasional Papers from the RHS Lindley Library Editor: Dr Brent Elliott Production & layout: Richard Sanford Printed copies are distributed to libraries and institutions with an interest in horticulture. Volumes are also available on the RHS website (www. rhs.org.uk/occasionalpapers). Requests for further information may be sent to the Editor at the address (Vincent Square) below, or by email ([email protected]). Access and consultation arrangements for works listed in this volume The RHS Lindley Library is the world’s leading horticultural library. The majority of the Library’s holdings are open access. However, our rarer items, including many mentioned throughout this volume, are fragile and cannot take frequent handling. The works listed here should be requested in writing, in advance, to check their availability for consultation. Items may be unavailable for various reasons, so readers should make prior appointments to consult materials from the art, rare books, archive, research and ephemera collections. It is the Library’s policy to provide or create surrogates for consultation wherever possible. We are actively seeking fundraising in support of our ongoing surrogacy, preservation and conservation programmes. For further information, or to request an appointment, please contact: RHS Lindley Library, London RHS Lindley Library, Wisley 80 Vincent Square RHS Garden Wisley London SW1P 2PE Woking GU23 6QB T: 020 7821 3050 T: 01483 212428 E: [email protected] E : [email protected] Occasional Papers from The RHS Lindley Library Volume 5, March 2011 B.
    [Show full text]
  • 2004 Cultivar Trials of Bedding Plants
    2004 Cultivar Trials of Bedding Plants Barbara A. Laschkewitsch, M.S. Trial Garden Coordinator Ronald C. Smith, Ph.D. Extension Horticulturist – Department of Plant Sciences Introduction The Plant Sciences Department at NDSU conducted performance trials on over 300 annual bedding plants during the 2004 growing season. The main research garden is located in Fargo, on the west edge of campus. Trial gardens are also located at the research extension centers in Dickinson and Williston, ND. Official entries (usually 150-200) are grown at all three locations while an additional 150-200 cultivars are also grown at the Fargo site. The display gardens are for educational and research purposes. They are open to the public throughout the growing season and guided tours are available upon request. The trial garden is an official display garden of both All-America Selections and the American Hemerocallis Society. Currently, there are over 1100 cultivars of daylilies in the collection with plans for more. The majority of the daylily cultivars are considered historic (pre-1970). There are also over 300 miscellaneous perennials and ornamental grasses in the garden. An extensive iris collection, courtesy of the Art Jensen family, was also added in 2003. New Fargo trial gardens are currently being constructed on the corner of 18th street and 12th avenue north. The move into the new beds should be completed by fall 2005. Culture Plants were seeded in the horticulture and forestry greenhouses on the NDSU campus from January through April, 2004. When at the proper stage, seedlings were transplanted into cell packs containing a peat-based growing medium.
    [Show full text]
  • Accd Nuclear Transfer of Platycodon Grandiflorum and the Plastid of Early
    Hong et al. BMC Genomics (2017) 18:607 DOI 10.1186/s12864-017-4014-x RESEARCH ARTICLE Open Access accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae Chang Pyo Hong1, Jihye Park2, Yi Lee3, Minjee Lee2, Sin Gi Park1, Yurry Uhm4, Jungho Lee2* and Chang-Kug Kim5* Abstract Background: Campanulaceae species are known to have highly rearranged plastid genomes lacking the acetyl-CoA carboxylase (ACC) subunit D gene (accD), and instead have a nuclear (nr)-accD. Plastid genome information has been thought to depend on studies concerning Trachelium caeruleum and genome announcements for Adenophora remotiflora, Campanula takesimana, and Hanabusaya asiatica. RNA editing information for plastid genes is currently unavailable for Campanulaceae. To understand plastid genome evolution in Campanulaceae, we have sequenced and characterized the chloroplast (cp) genome and nr-accD of Platycodon grandiflorum, a basal member of Campanulaceae. Results: We sequenced the 171,818 bp cp genome containing a 79,061 bp large single-copy (LSC) region, a 42,433 bp inverted repeat (IR) and a 7840 bp small single-copy (SSC) region, which represents the cp genome with the largest IR among species of Campanulaceae. The genome contains 110 genes and 18 introns, comprising 77 protein-coding genes, four RNA genes, 29 tRNA genes, 17 group II introns, and one group I intron. RNA editing of genes was detected in 18 sites of 14 protein-coding genes. Platycodon has an IR containing a 3′ rps12 operon, which occurs in the middle of the LSC region in four other species of Campanulaceae (T. caeruleum, A. remotiflora, C.
    [Show full text]
  • Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora Infestans in Wild Relatives of Potato
    Genetics and Resistance Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora infestans in Wild Relatives of Potato A. Khiutti, D. M. Spooner, S. H. Jansky, and D. A. Halterman First author: All-Russian Institute for Plant Protection, Laboratory of Plant Immunity to Diseases, 3, Podbelsky shosse, St. Petersburg-Pushkin, 196608, Russia; second, third, and fourth authors: United States Department of Agriculture–Agricultural Research Service, Madison, WI, 53726; and second and third authors: Department of Horticulture, University of Wisconsin, Madison 53706. Accepted for publication 8 April 2015. ABSTRACT Khiutti, A., Spooner, D. M., Jansky, S. H., and Halterman, D. A. 2015. intensive. We tested the ability of taxonomy, ploidy, crossing group, Testing taxonomic predictivity of foliar and tuber resistance to Phytoph- breeding system, and geography to predict the presence of foliar and thora infestans in wild relatives of potato. Phytopathology 105:1198-1205. tuber late blight resistance in wild Solanum spp. Significant variation for resistance to both tuber and foliar late blight was found within and Potato late blight, caused by the oomycete phytopathogen Phytoph- among species but there was no discernable predictive power based on thora infestans, is a devastating disease found in potato-growing regions taxonomic series, clade, ploidy, breeding system, elevation, or geo- worldwide. Long-term management strategies to control late blight graphic location. We observed a moderate but significant correlation include the incorporation of host resistance to predominant strains. between tuber and foliar resistance within species. Although previously However, due to rapid genetic changes within pathogen populations, uncharacterized sources of both foliar and tuber resistance were rapid and recurring identification and integration of novel host resistance identified, our study does not support an assumption that taxonomic or traits is necessary.
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Open Ohlsondissertation.Pdf
    The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Genetics GENETIC CHARACTERIZATION AND MAPPING OF LATE BLIGHT RESISTANCE GENES IN THE WILD TOMATO ACCESSIONS PI 163245 AND PI 224710 A Dissertation in Genetics by Erik William Ohlson © 2015 Erik William Ohlson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 ii The dissertation of Erik William Ohlson was reviewed and approved* by the following: Majid R. Foolad Professor of Plant Genetics Dissertation Advisor David R. Huff Professor of Turfgrass Breeding and Genetics Chair of Committee Surinder Chopra Professor of Maize Genetics Beth K. Gugino Associate Professor of Vegetable Pathology Timothy W. McNellis Associate Professor of Plant Pathology Yinong Yang Associate Professor of Plant Pathology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Chair of the Intercollege Graduate Degree Program in Genetics *Signatures are on file in the Graduate School. iii ABSTRACT Late blight (LB), caused by the oomycete Phytophthora infestans (Mont.) de Bary is one of the most destructive diseases of tomato and potato worldwide. Development of fungicide resistant and more aggressive P. infestans clonal lineages has emphasized the importance of discovering and incorporating new genetic resistance in tomato cultivars. Although the cultivated tomato, Solanum lycopersicum L., contains limited genetic diversity, several related wild species of tomato are suitable for identification of new desirable traits. Previously, 67 S. pimpinellifolium accessions were screened for LB resistance in field, greenhouse and detached leaflet trials and 12 accessions with strong resistance to LB were identified. In this dissertation, two resistant accessions, PI 163245 and PI 224710, were selected for further genetic characterization.
    [Show full text]
  • RHS the Garden Index 2011: Volume 136, Parts 1-12
    January 2011 I £4.25 I www.rhs.org.uk February 2011 I £4.25 I www.rhs.org.uk March 2011 I £4.25 I www.rhs.org.uk April 2011 I £4.25 I www.rhs.org.uk This month: June 2011 I £4.25 I www.rhs.org.uk July 2011 I £4.25 I www.rhs.org.uk WINTER GARDEN DELIGHT VINTAGE DAFFODILS IDEAS FOR STAKING PERENNIALS GUIDE TO USING PEAT-FREE COMPOST The December 2011 | www.rhs.org.uk | £4.25 August 2011 I £4.25 I www.rhs.org.uk Garden VIBURNUMS FOR WINTER ANNUALS WITHA POTTED PASSION FOR APPE AL HOUSE PLANTS How to grow moth orchidsCHELSEA CHAMPIONS PRODUCTIVE CONTAINERS ASTRANTIAS FOR SUMMER STYLE FLOWERING CHERRIES OLD ANDPOPPIES NEW ON THE MARCHquinces: SWEET DIVERSITY IN HONEYSUCKLEScelebrating a forgotten fruit VARIEGATED EVERGREENS Index 2011: Volume 136, Parts 1–12 INDULGE IN GINGERS CURIOUS CUCUMBER RELATIVES Aug11 Cover_August 2011_The Garden_ 1 14/07/2011 11:28 Fruiting shrubs to attract birds Index 2011 January 2011 I £4.25 I www.rhs.org.uk February 2011 I £4.25 I www.rhs.org.uk March 2011 I £4.25 I www.rhs.org.uk April 2011 I £4.25 I www.rhs.org.uk May 2011 I £4.25 I www.rhs.org.uk June 2011 I £4.25 I www.rhs.org.uk This month: WINTER GARDEN DELIGHT VIBURNUMS FOR WINTER VINTAGE DAFFODILS PRODUCTIVE CONTAINERS BORDER BRILLIANCE POPPIES ON THE MARCH GUIDE TO USING PEAT-FREE COMPOST ANNUALS WITH POTTED APPEAL IDEAS FOR STAKING PERENNIALS FLOWERING CHERRIES OLD AND NEW DISPELLING WISTERIA MYTHS SWEET DIVERSITY IN HONEYSUCKLES January 2011 February 2011 March 2011 April 2011 May 2011 June 2011 1 pp1–68 2 pp69–142 3 pp143–214 4 pp215–286 5 pp287–364 6 pp365–432 Numbers in bold before Frutti Series) 6: 407, caterpillar 8: 529 vineale 5: 349 the page number(s) 407 readers’ response allotments: AWARD OF GARDEN MERIT denote the part number Achimenes: 10: 17 keeping them (month).
    [Show full text]
  • Ornamental and Weed Potential of Acacia Baileyana F. Muell: Lnvestigations of Fertility and Leaf Colour
    Ornamental and weed potential of Acacia baileyana F. Muell: lnvestigations of fertility and leaf colour Anne Morgan B.Sc. (Hons) Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Discipline of Wine and Horticulture School of Agriculture and'Wine Faculty of Sciences The University of Adelaide September 2003 A flowering branch of Acacia baileyana F. Muell. Table of Gontents Abstract I Declaration iü Acknowledgements iv Listof Tables vi List of Flgures x List of Plates xiü Chapter One: General Introduction I 1-I Acacia 1 I.2 Acaciabaileyana 2 1.2.1 Weed status ofAc¿cia baileyana J L.2.2 Ornamental status of Acacia baileyann 4 1.3 Thesis Objectives 5 Chapter Two: Literature Review 7 2 1 Fertility 7 2.1.1 Factors affecting seed production 7 2.t.l.l Number of flowers 7 2.1.L.2 Breeding systems 9 2.1.1.3 Pollinators l1 2.1.1.4 Predation t2 2.1.1.5 Resources and environmental conditions 12 2.2 Environmental weeds t3 2.2.1 Acacia species as weeds t4 2.3 Leafcolour 15 2.3.1 Anthocyanins t6 2.3.2 Flavonoid pathway to anthocyanin biosynthesis t7 2.3.3 Color¡r søbilising and intensifying effects t9 2.3.4 Envi¡onmental and abiotic factors regulating anthocyanin accumulation 20 2.3.5 Function of leaf anthocyanins 2l 2.3.6 Genes involved in biosynthesis of anthocyanins 23 Table of Contents 2.3.7 Inheritance of leaf colour 25 2.4 Conclusions 26 Chapúer Three: Environmental control of bud formation and flowering of clonal Acaciabaileyana 28 3.1 Intoduction 28 3.2 Materials and methods .............
    [Show full text]
  • Gene RB Cloned from Solanum Bulbocastanum Confers Broad Spectrum Resistance to Potato Late Blight
    Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight Junqi Song*†, James M. Bradeen†‡, S. Kristine Naess‡, John A. Raasch§, Susan M. Wielgus*‡, Geraldine T. Haberlach‡, Jia Liu¶, Hanhui Kuangʈ, Sandra Austin-Phillips§, C. Robin Buell¶, John P. Helgeson‡**, and Jiming Jiang*,** *Department of Horticulture, §Biotechnology Center, and ‡U.S. Department of Agriculture–Agricultural Research Service and Department of Plant Pathology, University of Wisconsin, Madison, WI 53706; ¶The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850; and ʈDepartment of Vegetable Crops, University of California, Davis, CA 95616 Communicated by S. J. Peloquin, University of Wisconsin, Madison, WI, June 6, 2003 (received for review March 1, 2003) Late blight, caused by the oomycete pathogen Phytophthora times sporulates on PT29-derived resistant materials. The resis- infestans, is the most devastating potato disease in the world. tance of the PT29-derived plants is manifested as a slow Control of late blight in the United States and other developed progression of lesion development that substantially decreases countries relies extensively on fungicide application. We previ- the rate of disease development in the plants. This phenotype of ously demonstrated that the wild diploid potato species Solanum general suppression but not elimination of symptom develop- bulbocastanum is highly resistant to all known races of P. infestans. ment has been consistently observed in field tests at various Potato germplasm derived from S. bulbocastanum has shown locations in the United States and in Toluca, Mexico, between durable and effective resistance in the field. Here we report the 1995 and 2002. The late blight resistance associated with the cloning of the major resistance gene RB in S.
    [Show full text]
  • Cut Flowers, Cut Foliages, Cut Ornamentals, and Floral Arrangements for Their Corporate, Commercial, and Residential Clients
    2017 National Collegiate Landscape Competition Flower and Foliage ID List Brigham Young University—Provo, Utah Reminders for students about scientific names: 1) Genus names are always capitalized. 2) The specific epithet (species name) always starts with a lower-case letter. 3) Cultivar names are always capitalized and enclosed within single quotes. 4) Common names begin with lower-case letters; however, proper nouns are capitalized: i.e. lily of the Nile; Peruvian lily; star of Bethlehem; bells of Ireland 5) The cultivar name is considered a proper name because it is a specific selection of the species or hybrid; it often becomes part of the common name and continues to be capitalized: i.e. Philodendron bipinnatifidum ‘Hope’ = Hope philodendron 6) Technically, there is no space between the hybrid sign “x” and the specific epithet; a space has been used in this list for the sake of clarity: i.e. Chrysanthemum xgrandiflorum = Chrysanthemum x grandiflorum 7) Because numerous species are used and sometimes the exact species is not always known, “spp.” is written following the genus name in lower case letters (as shown on the list). 8) In the case of many hybrids and/or cultivars, the words “Hybrids” or “Hybrid Cultivars,” etc. (as shown) is listed following the genus name. 9) Information in parentheses, synonym scientific names, plant patent numbers, and plant groupings, etc. do not need to be memorized. 10) Although there will be an entire bunch of the same plant material in each vase or bucket, the common name should be listed for one stem: i.e. peony, not peonies; galax leaf, not galax leaves 11) Although genus and species names are generally italicized while cultivar names are not, you will not be required to italicize scientific names.
    [Show full text]
  • Summary of Risk Assessment of a Deliberate Release
    Notification 6786-01-0191 Summary of the risk assessment carried out by the German competent authority on the genetically modified potato ( Solanum tuberosum ) with altered carbohydrate metabolism within the framework of a proposed deliberate release Berlin, 31 March 2008 Explanatory note to this document: The following text reflects the summary of the risk assessment of (a) genetically modified organism(s) to be used for experimental field trials (deliberate releases) in Germany. The text forms part of the offi- cial authorisation regarding applications for the permit of deliberate releases (field trials) of genetically modified organisms in Germany under the legal framework of Directive 2001/18/EC and the German Gene Technology Act (Gentechnikgesetz, GenTG). The authorisation is issued by the Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, BVL [Federal Office of Consumer Protection and Food Safety ], as the German Competent Authority. It comprises the chapters I. Consent [to the application] II. Provisions [to be respected in execution of the field trials] III. Justification III.1. Requirements for approval according to section 16 GenTG [German Gene Technology Act] III.1.1. Requirements for approval according to section 16 (1) Nr. 1 GenTG III.1.2. Requirements for approval according to section 16 (1) Nr. 3 GenTG III.1.3. Requirements for approval according to section 16 (1) Nr. 2 GenTG III.1.4. Formal requirements according to section 16 (4, 5) GenTG III.2 Appraisal of and reply to objections IV. Costs V. Legal instruction Only the original German document is legally binding. The following passage is a courtesy translation of the chapter III.1.2.
    [Show full text]