Using Molecular Identification of Ichthyoplankton to Monitor

Total Page:16

File Type:pdf, Size:1020Kb

Using Molecular Identification of Ichthyoplankton to Monitor UC San Diego UC San Diego Previously Published Works Title DNA sequencing of fish eggs and larvae reveals high species diversity and seasonal changes in spawning activity in the southeastern Gulf of California Permalink https://escholarship.org/uc/item/9bd9h8t9 Authors Ahern, Ana Luisa M Gomez-Gutierrez, Jaime Aburto-Oropeza, Octavio et al. Publication Date 2018-03-29 DOI 10.3354/meps12446 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded. 35 Noteworthy species identified include rare mesopelagic species such as the giant oarfish 36 (Regalecus glesne) and highly migratory and commercially important species such as black 37 skipjack (Euthynnus lineatus) and yellowfin tuna (Thunnus albacares). Spawning activities 38 showed distinct seasonal patterns with the highest abundance of ichthyoplankton recorded during 39 spring, highest species richness during summer (90 OTUs) and lowest species richness during 40 winter (28 OTUs). A total of seven OTUs were recorded throughout the year (4%), 11 OTUs 41 during three seasons (7%), 36 OTUs in two seasons (23%) and 106 OTUs were recorded in only 42 one season (66%). The study found eggs and/or larvae of 47 species that were not previously 43 reported in Cabo Pulmo National Park. Results allow resource managers to compare shifting 44 populations and spawning patterns of species that may be affected by both conservation efforts 45 and broader oceanographic changes associated with climate change. 46 47 48 KEY WORDS: Marine protected area · DNA barcoding · molecular ecology · marine 49 conservation · Cabo Pulmo National Park · Gulf of California · Mexico 2 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 50 INTRODUCTION 51 52 Cabo Pulmo National Park is a subtropical no-take marine reserve located on the 53 southeast coast of Baja California Sur, Mexico in the Gulf of California (Fig. 1A, B). This 54 national park is a unique example of a successfully managed marine protected area (Aburto- 55 Oropeza et al. 2011). Established as a Mexican national marine park in 1995, Cabo Pulmo 56 National Park is recognized as a UNESCO World Heritage Site. Since 1995, the community of 57 Cabo Pulmo voluntarily chose to expand the no-take zone from an initial 35% to nearly 100% of 58 the 27-square mile park (Aburto-Oropeza et al. 2011) (Fig. 1B). Although the community of 59 Cabo Pulmo already supported a small tourism industry, it was bolstered as the biomass, 60 abundance and diversity of charismatic and commercially important fish species as well as 61 marine mammals increased. A ten-year study showed a 463% increase in total fish biomass and 62 a 1070% increase in biomass of top predators since 1995, the largest ever measured in a marine 63 reserve worldwide (Aburto-Oropeza et al. 2011, 2015). 64 While the biota of the rocky and coral reefs of Cabo Pulmo National Park are thriving, 65 they are still vulnerable to a multitude of threats including coastal development (Arizpe & 66 Covarrubias 2010), overfishing (Johnson et al. 2017), and climate change (Verutes et al. 2014, 67 Robinson et al. 2013, 2016). As the area has garnered more public and academic attention, large 68 international developers have proposed development projects in neighboring communities that 69 could have negative effects for Cabo Pulmo National Park’s coastline and marine biota (Arizpe 70 & Covarrubias 2010). As a consequence of global climate change, it is predicted the oceans will 71 experience a significant increase in sea surface temperature in the next 100 years (Levitus et al. 72 2009), which could result in more frequent and intense El Niño Southern Oscillation (ENSO) 3 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 73 events, many of which have had significant effects on the region in the past and recent years 74 (Timmermann et al. 1999, Robinson et al. 2013, 2016). Since 2010 the Gulf of California has 75 experienced an increase in sea surface temperature and decrease of wind speed, resulting in 76 lower sea surface chlorophyll-a concentration than previous years (Robinson et al. 2016). The 77 waters of Cabo Pulmo National Park will likely face increased fluctuations in temperature, 78 dissolved oxygen concentrations, pH, nutrient content, and circulation that could negatively 79 impact this delicate rocky and coral reef ecosystem (Doney et al. 2012). 80 Careful monitoring of vulnerable coastal marine ecosystems is needed to track biotic 81 changes that may occur as a result of a changing climate and to inform marine resource 82 management decisions (Harada et al. 2015). The abundance and species composition of 83 ichthyoplankton collected from the water column provides valuable information concerning the 84 broadcast spawning activities of fishes and plays a significant role in the assessment and 85 management of marine ecosystems (Gleason & Burton 2012). Ichthyoplankton surveys can be 86 used as a fisheries independent indicator of ecosystem health, estimating species-specific 87 spawning biomass, reproductive periods, overall reproductive strategies and population 88 dynamics as a function of environmental variability (Lo 2001, Aceves-Medina et al. 2003, 2004). 89 They can also help identify the location of critical spawning habitat that should be protected in 90 order to ensure the present and long-term sustainability of vulnerable fish populations (Sala et al. 91 2003). 92 Historically, scientists and fisheries managers have relied on morphological identification 93 of ichthyoplankton (mostly larvae, occasionally eggs) to determine which species spawn in a 94 particular area (Ahlstrom & Moser 1980, Aceves-Medina et al. 2003, 2004, Miller & Kendall 95 2009, Harada et al. 2015). A considerable drawback to this morphological method is the 4 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 96 difficulty of telling species apart at early life stages; in fact, many species have virtually 97 indistinguishable eggs and successful identification of fish eggs and preflexion fish larvae using 98 morphological characteristics alone requires years of study (Ahlstrom and Moser 1980, Hyde et 99 al. 2005). Even then, morphological experts can experience high uncertainty in fish egg 100 identification (Ahlstrom & Moser 1980, Moser et al. 1974, 1993), which can prove costly when 101 these data are used to determine population abundance and make management decisions for 102 targeted species. Where traditional morphological analysis may have difficulty distinguishing 103 species with similar morphological characteristics, molecular genetic analysis can provide 104 accurate species identification to infer spawning strategies and determine the magnitude of 105 reproductive efforts of fish assemblages (Burton 2009, Harada et al. 2015). 106 Molecular analysis of ichthyoplankton provides valuable information about temporal and 107 geographic spawning activity and can be used for the purposes of stock assessments and 108 monitoring ecosystem health (Perez et al. 2005, Harada et al. 2015). The use of molecular 109 genetic tools to assist in conservation efforts is becoming increasingly affordable (NHGRI 110 Genome Sequencing Program, http://www.genome.gov/sequencingcosts/). Other methods of 111 monitoring fish populations include diver-conducted monitoring surveys, which until now have 112 been the primary source of information about the abundance and diversity of fish species found 113 in Cabo Pulmo National Park’s waters (Alvarez-Filip et al. 2006, Aburto-Oropeza et al. 2011, 114 2015). Many species reproduce at night when divers are unable
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • 8.4 the Significance of Ocean Deoxygenation for Continental Margin Mesopelagic Communities J
    8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow 8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia and Scripps Institution of Oceanography, University of California, SD, La Jolla, CA 92093 USA. Email: [email protected] Summary • Global climate models predict global warming will lead to declines in midwater oxygen concentrations, with greatest impact in regions of oxygen minimum zones (OMZ) along continental margins. Time series from these regions indicate that there have been significant changes in oxygen concentration, with evidence of both decadal variability and a secular declining trend in recent decades. The areal extent and volume of hypoxic and suboxic waters have increased substantially in recent decades with significant shoaling of hypoxic boundary layers along continental margins. • The mesopelagic communities in OMZ regions are unique, with the fauna noted for their adaptations to hypoxic and suboxic environments. However, mesopelagic faunas differ considerably, such that deoxygenation and warming could lead to the increased dominance of subtropical and tropical faunas most highly adapted to OMZ conditions. • Denitrifying bacteria within the suboxic zones of the ocean’s OMZs account for about a third of the ocean’s loss of fixed nitrogen. Denitrification in the eastern tropical Pacific has varied by about a factor of 4 over the past 50 years, about half due to variation in the volume of suboxic waters in the Pacific. Continued long- term deoxygenation could lead to decreased nutrient content and hence decreased ocean productivity and decreased ocean uptake of carbon dioxide (CO2).
    [Show full text]
  • Lincolnshire Time and Tide Bell Community Interest Company The
    To bid, visit #200Fish www.bit.ly/200FishAuction Art inspired by each species of fish found in the North Sea : mail - il,com Auction The At the exhibition and by e and exhibition At the biffvernon@gma Lincolnshire Time and Tide Bell Community Interest Company Bidding is open now by e-mail and at the gallery during the exhibition’s opening hours. Bidding ends 6 pm Monday 3rd September 2018 The #200Fish Auction Thanks to the many artists who have so generously donated their works to the Lincolnshire Time and Tide Bell Community Interest Company to raise funds for our future art and environmental projects, we are selling some of the artworks in the #200Fish exhibition by auction. Here’s how it works. Take a look through this catalogue and if you would like to buy a piece send us an email giving the Fish Number and how much you are willing to pay. Or if you visit the North Sea Observatory during the exhibition, 23rd August to 3rd September, you can hand in your bid on paper. Along with your bid amount, please include your e-mail address and postal address. After the auction closes, at 6pm Monday 3rd September 2018, the person who has bid the highest price wins and we’ll send you an e-mail. Sold works can be collected from the gallery on Tuesday the 4th or from my house in North Somercotes any time later. We can post them to you but will charge whatever it costs us. Bear in mind that the images displayed here are a bit rubbish, just low resolution versions of snapshots as often as not taken on a camera phone rather than in a professional art photo studio.
    [Show full text]
  • Fish Larvae Retention Linked to Abrupt Bathymetry at Mejillones Bay (Northern Chile) During Coastal Upwelling Events
    Lat. Am. J. Aquat. Res., 42(5): 989-1008,Fish 2014 larvae retention and bottom topography at Mejillones Bay, Chile 989 DOI: 10.3856/vol42-issue5-fulltext-6 Research Article Fish larvae retention linked to abrupt bathymetry at Mejillones Bay (northern Chile) during coastal upwelling events Pablo M. Rojas1 & Mauricio F. Landaeta2 1División de Investigación en Acuicultura, Instituto de Fomento Pesquero P.O. Box 665, Puerto Montt, Chile 2Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso P.O. Box 5080, Reñaca, Viña del Mar, Chile ABSTRACT. The influence of oceanic circulation and bathymetry on the fish larvae retention inside Mejillones Bay, northern Chile, was examined. Fish larvae were collected during two coastal upwelling events in November 1999 and January 2000. An elevated fish larvae accumulation was found near an oceanic front and a zone of low-speed currents. Three groups of fish larvae were identified: the coastal species (Engraulis ringens and Sardinops sagax), associated with high chlorophyll-a levels; larvae from the families Phosichthyidae (Vinciguerria lucetia) and Myctophidae (Diogenichthys laternatus and Triphoturus oculeus), associated with the thermocline (12°C), and finally, larvae of the families Myctophidae (Diogenichthys atlanticus) and Bathylagidae (Bathylagus nigrigenys), associated with high values of temperature and salinity. The presence of a seamount and submarine canyon inside Mejillones Bay appears to play an important role in the circulation during seasonal upwelling events. We propose a conceptual model of circulation and particles retention into Mejillones Bay. The assumption is that during strong upwelling conditions the flows that move along the canyon emerge in the centre of Mejillones Bay, producing a fish larvae retention zone.
    [Show full text]
  • AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED by AUF RECORDS OFFICER VIN RUSHWORTH Common Names
    AUSTRALIAN NATIONAL SPEARFISHING RECORDS JULY 2018 COMPILED BY AUF RECORDS OFFICER VIN RUSHWORTH Common Names Common Name Pg. Common Name Pg. Albacore 37 Cod, Barramundi 39 Amberjack 8 Cod, Bearded 27 Amberjack, High-fin 9 Cod, Black 40 Angelfish Yellow-Mask 32 Cod, Blacksaddle Rock 40 Angelfish, Blue 32 Cod, Blackspotted 40 Angelfish, Imperial 32 Cod, Black-Tipped Rock 40 Angelfish, Six Banded 32 Cod, Break-Sea 39 Anglerfish, Spinycoat 3 Cod, Camouflage 40 Barracouta 13 Cod, Chinaman 41 Barracuda, Blackfin 44 Cod, Coral 39 Barracuda, Blue and Gold 44 Cod, Coral Rock 39 Barracuda, Chevron 44 Cod, Dusky 42 Barracuda, Great 44 Cod, Flowery 40 Barracuda, Pickhandle 44 Cod, Freckled Coral 39 Barramundi 20 Cod, Gold Spotted 39 Bass, Red 23 Cod, Highfin 40 Batfish, Black-tip 13 Cod, Long-finned Rock 41 Batfish, Hump-headed 13 Cod, Long-headed 41 Batfish, Long-finned 13 Cod, Maori 41 Batfish, Long-snout 13 Cod, Masked 41 Batfish, Short-finned 13 Cod, Ocellated 39 Bigeye, Lunar-tailed 33 Cod, Peacock Coral 39 Blackfish, Banded Rock 14 Cod, Potato 41 Blackfish, Rock 14 Cod, Pug-Nosed Wire-netting 40 Blackfish, Western Rock 14 Cod, Purple 40 Blanquillo, Blue 25 Cod, Rankin 40 Blue Devil, Eastern 31 Cod, Red 27 Blue Devil, Southern 31 Cod, Red Rock 37 Bluefish 13 Cod, Red Rock Western 38 Blue-lined Seabream 24 Cod, Red-flushed Rock 38 Boarfish, Giant 30 Cod, Speckledfin 40 Boarfish, Longsnout 30 Cod, Tomato Coral 39 Boarfish, Short 30 Cod, Twin-Spot 39 Boarfish, Yellow-spotted 30 Cod, White-lined Rock 38 Bonefish, Eastern 3 Coral Fish, New-moon
    [Show full text]
  • Using Molecular Identification of Ichthyoplankton to Monitor
    Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded.
    [Show full text]
  • Blue Planet II - Our World, Our Oceans Scaling New Depths in Partnership with the BBC Natural History Unit
    The magazine for supporters and friends of The Open University Issue No. 13 Our on-going mission Transforming lives and unlocking potential Our Blue Planet Exploring the amazing worlds in our oceans A turning point for breast cancer surgery? A new study could provide a huge breakthrough Open Door March 2018 v16.indd 1 07/02/2018 17:42 Welcome Inside this Open Door 3 Continuing our mission to widen participation Br eaking down the barriers 3 5 Blue Planet II - our world, our oceans Scaling new depths in partnership with the BBC Natural History Unit 8 News in brief Upda te on scholarships for disabled veterans and recycling course materials 10 Breast cancer pilot study Working towards improving the accuracy of surgery 11 The gift of education 5 Changing lives - one student at a time 12 The legacy garden A visual testament of gratitude and a place of quiet reflection 9 or examination, to the point where they cross the Welcome and thank stage and graduate. you for all your support I want to thank you for the part you play in As you know, people of all ages and supporting our students. Whether that is supporting backgrounds study with us, for all students with disabilities, or helping them financially sorts of reasons – to update their - you have helped and encouraged them through skills, get a qualification, boost their journeys. their career, change direction, and Thank you so much for your generosity. You help to to prove themselves. The OU is make our students’ dreams a reality. open to them all.
    [Show full text]
  • SWFSC Archive
    Stomiiformes Chapter 4 Order Stomiiformes Number of suborders (2) Gonostomatoidei; Phosichthyoidei (= Photichthyoidei, Stomioidei). Stomiiform monophyly was demonstrated by Fink and Weitzman (1982); relationships within the order are not settled, e.g., Harold and Weitzman (1996). Number of families 4 (or 5: Harold [1998] suggested that Diplophos, Manducus, and Triplophos do not belong in Gonostomatidae, and Nelson [2006] provi sionally placed them in a separate family, Diplophidae). Number of genera 53 Number of species approx. 391 GENERAL LIFE HISTORY REF Distribution All oceans. Relative abundance Rare to very abundant, depending on taxon. Adult habitat Small to medium size (to ca. 10-40 cm) inhabitants of epi-, meso-, and bathypelagic zones, some are vertical migrators. EARLY LIFE HISTORY Mode of reproduction All species known or assumed to be oviparous with planktonic eggs and larvae. Knowledge of ELH Eggs known for 9 genera, larvae known for 38 genera. ELH Characters: Eggs: spherical, ca. 0.6-3.6 mm in diameter, commonly with double membrane, yolk segmented, with 0-1 oil globule ca. 0.1-0.4 mm in di ameter, perivitelline space narrow to wide. Larvae: slender and elongate initially but some become deep-bodied (primarily some sternoptychids and stomiids); preanal length ranges from approx. 30%BL to > 70% BL, most commonly > about half BL, some taxa with trailing gut that can be > 100% BL; eyes strongly ellipti cal to round, most commonly elliptical, stalked in some species; spines lacking on head and pectoral girdle except in some sternoptychids; myo- meres range from 29-164, most commonly approx. mid-30's to mid- 60's; photophores form during postflexion and/or transformation stage; pigmentation absent to heavy, most commonly light.
    [Show full text]
  • Making a Big Splash with Louisiana Fishes
    Making a Big Splash with Louisiana Fishes Written and Designed by Prosanta Chakrabarty, Ph.D., Sophie Warny, Ph.D., and Valerie Derouen LSU Museum of Natural Science To those young people still discovering their love of nature... Note to parents, teachers, instructors, activity coordinators and to all the fishermen in us: This book is a companion piece to Making a Big Splash with Louisiana Fishes, an exhibit at Louisiana State Universi- ty’s Museum of Natural Science (MNS). Located in Foster Hall on the main campus of LSU, this exhibit created in 2012 contains many of the elements discussed in this book. The MNS exhibit hall is open weekdays, from 8 am to 4 pm, when the LSU campus is open. The MNS visits are free of charge, but call our main office at 225-578-2855 to schedule a visit if your group includes 10 or more students. Of course the book can also be enjoyed on its own and we hope that you will enjoy it on your own or with your children or students. The book and exhibit was funded by the Louisiana Board Of Regents, Traditional Enhancement Grant - Education: Mak- ing a Big Splash with Louisiana Fishes: A Three-tiered Education Program and Museum Exhibit. Funding was obtained by LSUMNS Curators’ Sophie Warny and Prosanta Chakrabarty who designed the exhibit with Southwest Museum Services who built it in 2012. The oarfish in the exhibit was created by Carolyn Thome of the Smithsonian, and images exhibited here are from Curator Chakrabarty unless noted elsewhere (see Appendix II).
    [Show full text]
  • Peces Óseos Marinos (Pisces: Osteichthyes)
    Bibliografía sobre Biodiversidad Acuática de Chile (Pisces: Os P eces ÓseosMarinos t eich th y es) Bibliografía sobre Biodiversidad Acuática de Chile Palma, S., P. Báez & G. Pequeño (eds.). 2010 Comité Oceanográfico Nacional, Valparaíso, pp. 315-395 Peces Óseos Marinos (Pisces: Osteichthyes) Germán Pequeño1, Sylvia Sáez1 & Gloria Pizarro2 1Instituto de Zoología “Ernst F. Kilian”, Universidad Austral de Chile. Casilla 567, Valdivia, E-mail: [email protected] 2Librería Punto 4, Valdivia. RESUMEN Se presentan 1.772 referencias sobre taxonomía, sistemática y distribución geográfica de los peces óseos marinos y que siendo marinos penetran en estuarios de Chile. Se consideran peces de la costa de Chile en el continente sudamericano y también de las islas oceánicas chilenas. Palabras clave: peces, bibliografía, biodiversidad, Pacífico suroriental, Chile. ABSTRACT One thousand seven hundred and seventy-two references on taxonomy, systematics and geographical distribution of marine bony fishes and those that being marine enter in estuaries of Chile are presented. The species considered are those from the Chilean continental coast and those from the Chilean oceanic islands. Key words: fishes, bibliography, biodiversity, southeastern, Chile. INTRODUCCIÓN marinos, incursionan en estuarios, consi-derando la costa de Chile que integra el continente sudamericano Actualmente, se podría decir que las especies y aquella de las islas oceánicas. Puede observarse conocidas de peces óseos de aguas marinas chilenas que se trata de un listado bastante restringido, pero alcanzan un número cercano a las 1.050. Se supone que servirá al lector, en los aspectos científicos que dada la falta de exploración, especialmente en el básicos señalados. dominio marino, ese número debería aumentar.
    [Show full text]
  • 112Th Annual Meeting May 3, 2019
    SOUTHERN CALIFORNIA ACADEMY OF SCIENCES TH 112 ANNUAL MEETING MAY 3, 2019 California State University Northridge 1 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES About the Academy The objectives of the Academy are to promote fellowship among scientists and those interested in science; to contribute to scientific literature through publication of pertinent manuscripts; to encourage and promote scholarship among young scientists; and to provide information to the membership, to the public, and to the public agencies on such matters as may be of joint interest to the sciences and society. ARTICLE II – OBJECTIVES in the By-Laws of the Southern California Academy of Sciences The Academy utilizes dues and contributions to promote student research, from high school students through the college graduate level with the following activities: • Research Training Program: High school students conduct research with professional mentors and present their results at the Annual Meeting. Top presenters also attend the national conference of the American Junior Academy of Science held in conjunction with the American Association for the Advancement of Science. • Research support: Undergraduate and graduate students receive grants to help cover their research costs. • Cash awards: Undergraduate and graduate students receive awards for best presentation and best poster at the Annual Meeting. The Academy is working toward expanding its student programs by increasing the number of student participants, as well as increasing the amount of research support and cash awards. Contributions are vital in helping the Academy achieving this goal. The Southern California Academy of Sciences is a Federally-recognized 501(c)(3) non-profit organization Please join us for future meetings! May 8, 2020 May 2021 1 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES President’s Message Friends and colleagues, Welcome to the 2019 Annual Meeting of the Southern California Academy of Sciences at California State University Northridge.
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]