Predictors of Caffeine-Related Withdrawal Symptoms in College Freshmen

Total Page:16

File Type:pdf, Size:1020Kb

Predictors of Caffeine-Related Withdrawal Symptoms in College Freshmen Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2016 PREDICTORS OF CAFFEINE-RELATED WITHDRAWAL SYMPTOMS IN COLLEGE FRESHMEN David J. Pomm Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Human and Clinical Nutrition Commons, Other Psychiatry and Psychology Commons, and the Substance Abuse and Addiction Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4467 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. PREDICTORS OF CAFFEINE-RELATED WITHDRAWAL SYMPTOMS IN COLLEGE FRESHMEN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By: DAVID JONATHAN POMM Bachelor of Science, Eastern Mennonite University, 2008 Director: Dace S. Svikis, Ph.D. Professor, Department of Psychology Deputy Director, VCU Institute for Women’s Health Virginia Commonwealth University Richmond, VA July 21, 2016 ii Acknowledgements This project would not have been possible without the continual support, guidance, and enthusiasm of my mentor and advisor, Dr. Dace Svikis. Dr. Svikis’ influence in my professional development and research has been extraordinary, and I have been privileged to complete this project under her direction and expertise. I would also like to extend appreciation to my committee members, Dr. Rosalie Corona and Dr. Pamela Dillion, for their valuable contributions and support. Lastly, I thank my wife, Brianna, for her unconditional support, love, patience, and encouragement. iii Table of Contents Page Acknowledgements .................................................................................................................... ii List of Tables ......................................................................................................................... v-vi List of Figures .......................................................................................................................... vii Abstract ................................................................................................................................... viii Introduction ................................................................................................................................. 1 Physical and Chemical Properties of Caffeine ........................................................................... 2 Pharmacology of Caffeine .......................................................................................................... 4 Pharmacokinetics .................................................................................................................... 4 Mechanism of Action .............................................................................................................. 5 Physiological & Behavioral Effects of Caffeine ..................................................................... 7 Dietary Sources of Caffeine ........................................................................................................ 9 Epidemiology ............................................................................................................................ 13 Caffeine Consumption World Wide ..................................................................................... 13 Caffeine Consumption in the U.S. ........................................................................................ 14 Overview of Caffeine and Caffeine Dependence ..................................................................... 20 Reinforcing Properties of Caffeine ....................................................................................... 20 Caffeine Intoxication ............................................................................................................ 22 Physical Dependence ............................................................................................................ 23 Tolerance............................................................................................................................... 26 Withdrawal ............................................................................................................................ 28 Caffeine-Related Withdrawal Symptoms ............................................................................. 31 Headache .......................................................................................................................... 31 Marked fatigue or drowsiness .......................................................................................... 33 Dysphoric mood, depressed mood, or irritability ............................................................ 35 Difficulty concentrating ................................................................................................... 36 Flu-like symptoms (nausea, vomiting, or muscle pain/stiffness) .................................... 36 Characteristics of Caffeine Withdrawal Syndrome .............................................................. 39 Functional Impairment & Prevalence .............................................................................. 39 Dosing Parameters & Time Course of Withdrawal ......................................................... 40 Caffeine Withdrawal & Habitual Caffeine Consumption ................................................ 41 Biological Basis of Caffeine Withdrawal ........................................................................ 42 Individual Differences in Caffeine Use & Withdrawal ....................................................... 42 Gender .............................................................................................................................. 42 Comorbid Alcohol & Nicotine Use ................................................................................. 46 Personality........................................................................................................................ 48 Anxiety, Depression, & Family History .......................................................................... 49 Genetics............................................................................................................................ 52 Statement of Problem ................................................................................................................ 55 Aims & Hypothesis ............................................................................................................... 57 Methods..................................................................................................................................... 58 Page iv Data Set ................................................................................................................................. 58 Participants ............................................................................................................................ 58 Study Procedures .................................................................................................................. 59 Informed Consent.................................................................................................................. 59 Data and DNA Collection ..................................................................................................... 59 Measures ................................................................................................................................... 60 Study Variables ......................................................................................................................... 64 Data Analysis and Procedures .................................................................................................. 66 Results ....................................................................................................................................... 68 Demographic Correlates of Caffeine Use ............................................................................. 68 Aim 1. Prevalence of Recent Caffeine Use and Withdrawal by Beverage Type and Gender ................................................................................................................... 70 Aim 2. Univariable and Multivariable Analyses Identifying Variables Associated with Caffeine Withdrawal Headache ............................................................................................ 77 Multivariable Regression Analysis ....................................................................................... 87 Discussion ................................................................................................................................. 89 Implications......................................................................................................................... 107 Study Limitations, Strengths, and Future Directions .......................................................... 107 Conclusion .......................................................................................................................... 110 List of References ................................................................................................................... 112 v List of Tables Page Table 1. Physical & Chemical
Recommended publications
  • Inhalants Booklet6/4/0712:04Ampage1 Inhalants Inhalants Booklet 6/4/07 12:04 AM Page 2
    inhalants booklet6/4/0712:04AMPage1 inhalants inhalants booklet 6/4/07 12:04 AM Page 2 inhalants WHAT ARE INHALANTS? Inhalants are a range of products that are sniffed or inhaled to give the user an immediate head rush or ‘high’. These substances are easily absorbed through the lungs and carried to the brain, where they act to slow down the central nervous system. Many familiar household products are inhalants. Some of the most common are: • Glue • Aerosol spray cans • Cleaning fluids • Felt-tipped pens • Correction fluid (liquid paper) • Chrome-based paints • Paint or paint thinner • Petrol • Anaesthetics Many inhalants are classified as volatile solvents. These change rapidly from a liquid or semi-solid state to a gas when exposed to air. They include chemicals that are found in products such as deodorants, air fresheners, lighter fuels and propellant gases used in aerosols such as whipped cream dispensers. Some volatile solvents are inhaled because of the effects produced not only by the product’s main ingredient, but by the propellant gases, as in aerosols, such as hair spray. Other solvents found in aerosol products such as gold and silver spray paint are sniffed not because of the effects from propellant gases but because of the psychoactive effects caused by the specific solvents necessary to suspend these metallic paints in the spray. The sniffing of metallic paints is known as ‘chroming’. inhalants booklet 6/4/07 12:04 AM Page 3 Another category of inhalant is the nitrites. Amyl, butyl and isobutyl nitrite (collectively known as alkyl nitrites) are clear, yellow liquids which are inhaled for their intoxicating effects.
    [Show full text]
  • An Ecological Investigation of the Time Course of Hangover
    AN ECOLOGICAL INVESTIGATION OF HANGOVER SEVERITY AND TIME COURSE _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by ERIN HUNT-CARTER Dr. Thomas Piasecki, Dissertation Supervisor DECEMBER 2010 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled AN ECOLOGICAL INVESTIGATION OF HANGOVER SEVERITY AND TIME COURSE presented by Erin E. Hunt-Carter, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Thomas M. Piasecki Professor Wendy S. Slutske Professor Kenneth J. Sher Professor Dennis K. Miller Professor Daniel C. Vinson Thank you to my wonderful husband, Brent. I would not have completed this without your endless encouragement and kindness. Thank you to my parents, Toni and John Hunt, and my parents-in-law, Sondra and Guy Carter. Their support and many hours of babysitting were invaluable. Thank you to my sister, Meghan Hunt, for being riotously funny and supporting me through this process. Finally, I’d like to thank my children, Ian and Anna Carter, for keeping me grounded and reminding me what is truly important in life. ACKNOWLEDGEMENTS It is a pleasure to thank those who made this dissertation possible. First, I would like to express my gratitude to my doctoral advisor, Dr. Thomas Piasecki. He generously welcomed me into his lab, and enabled me to gain invaluable experience with ecological momentary assessment. I could not have completed this dissertation without his patient advice, extensive knowledge, and encouragement.
    [Show full text]
  • Combined Exposure to Nicotine and Ethanol in Adolescent Mice Differentially Affects Anxiety Levels During Exposure, Short-Term, and Long-Term Withdrawal
    Neuropsychopharmacology (2008) 33, 599–610 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Combined Exposure to Nicotine and Ethanol in Adolescent Mice Differentially Affects Anxiety Levels during Exposure, Short-Term, and Long-Term Withdrawal ,1 1 1 1 Yael Abreu-Villac¸a* , Fernanda Nunes , Fabı´ola do E Queiroz-Gomes , Alex C Manha˜es and 1 Cla´udio C Filgueiras 1 ˆ ˆ Laborato´rio de Neurofisiologia, Departamento de Ciencias Fisiolo´gicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biome´dico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil Smoking and consumption of alcoholic beverages are frequently associated during adolescence. This association could be explained by the cumulative behavioral effects of nicotine and ethanol, particularly those related to anxiety levels. However, despite epidemiological findings, there have been few animal studies of the basic neurobiology of the combined exposure in the adolescent brain. In the present work we assessed, through the use of the elevated plus maze, the short- and long-term anxiety effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (from the 30th to the 45th postnatal day) in four groups of male and female C57BL/6 mice: (1) Concomitant NIC (nicotine free-base solution (50 mg/ml) in 2% saccharin to drink) and ETOH (ethanol solution (25%, 2 g/kg) i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) Vehicle. C57BL/6 mice were selected, in spite of the fact that they present slower ethanol metabolism, because they readily consume nicotine in the concentration used in the present study.
    [Show full text]
  • Caffeine and Adenosine
    Journal of Alzheimer’s Disease 20 (2010) S3–S15 S3 DOI 10.3233/JAD-2010-1379 IOS Press Review Article Caffeine and Adenosine Joaquim A. Ribeiro∗ and Ana M. Sebastiao˜ Institute of Pharmacology and Neurosciences, Faculty of Medicine and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal Abstract. Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine. Keywords: Adenosine, Alzheimer’s disease, anxiety, caffeine, cognition, Huntington’s disease, migraine, Parkinson’s disease, schizophrenia, sleep INTRODUCTION were considered out of the scope of the present work. For more detailed analysis of the actions of caffeine in Caffeine causes most of its biological effects via humans, namely cognition, dementia, and Alzheimer’s antagonizing all types of adenosine receptors (ARs).
    [Show full text]
  • DEMAND REDUCTION a Glossary of Terms
    UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use .
    [Show full text]
  • Inhalant Abuse Pediatric Care
    CLINICAL REPORT Guidance for the Clinician in Rendering Inhalant Abuse Pediatric Care Janet F. Williams, MD, Michael Storck, MD, and the Committee on Substance Abuse and Committee on Native American Child Health ABSTRACT Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet-underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeco- nomic boundaries, causing significant morbidity and mortality in school-aged and older children. This clinical report reviews key aspects of inhalant abuse, empha- sizes the need for greater awareness, and offers advice regarding the pediatrician’s role in the prevention and management of this substance abuse problem. TYPES OF CHEMICALS AND PRODUCTS ABUSED The term “inhalant” encompasses a wide range of pharmacologically diverse substances that readily vaporize. Most other substances of abuse are classified by grouping together substances that share a specific central nervous system action or perceived psychoactive effect, but inhalant substances that are abused are grouped by having a common route of drug use. Inhalant abuse, sometimes referred to as solvent or volatile substance abuse, can be better understood when the expansive list of inhalants is classified into 3 groups on the basis of what is currently known pharmacologically: group I includes volatile solvents, fuels, and anesthetics; group II includes nitrous oxide; and group III includes volatile alkyl nitrites (Table 1). This classification is also consistent with reported differences in user populations, patterns of abuse, and associated problems seen clinically.1–3 Drugs that do not www.pediatrics.org/cgi/doi/10.1542/ readily vaporize at room temperature, such as cocaine, heroin, nicotine, or alcohol, peds.2007-0470 can also be abused through inhalation, but characteristic pharmacologic properties doi:10.1542/peds.2007-0470 distinguish these substances from inhalants.
    [Show full text]
  • Expectation Hangover “I Wish I’D Had This Step-By-Step Guide on How to Overcome Huge Obstacles When I Shattered Both My Wrist and My Dreams of Playing for the NFL
    Praise for Expectation Hangover “I wish I’d had this step-by-step guide on how to overcome huge obstacles when I shattered both my wrist and my dreams of playing for the NFL. Don’t let your Expectation Hangover control your life — apply what is in this book!” — Lewis Howes, former pro athlete turned lifestyle entrepreneur, host of The School of Greatness podcast “Christine Hassler is the kind of true spiritual guide we all need in our corner — soulful, wise, compassionate, and practical. Her proven methods and deep personal understanding are like the best medicine ever for your heart and soul.” — Christine Arylo, self-love catalyst and author of Madly in Love with ME: The Daring Adventure of Becoming Your Own Best Friend “Christine Hassler continues to be an invaluable voice for every generation. Her insights and observations have changed and enlightened the way I look at my life and the way I raise my children.” — Michael DeLuca, film producer and Columbia Pictures president of production “Disappointment can be a big, ugly monster hiding under our beds. This book is the go-to for getting us through Expectation Hangovers with grace and shining light to cast away those ugly creatures of disappointment!” — Kathryn Budig, author of The Women’s Health Big Book of Yoga “Christine Hassler is brilliant and insightful. Finally, here is the solution for dealing with something that plagues so many, myself included. If you’re hoping to thrive in a world that seems to hand out setbacks at every oppor- tunity, this is the book for you.
    [Show full text]
  • Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes
    International Journal of Environmental Research and Public Health Article Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes Dariusz Nowak 1,* and Artur Jasionowski 2 1 Department of Nutrition and Dietetics, Faculty of Health Sciences, Nicolaus Copernicus University in Toru´n,Ludwik Rydygier Collegium Medicum in Bydgoszcz, D˛ebowa3, Bydgoszcz 85-626, Poland 2 Department of Theoretical Foundations of Biomedical Sciences and Medical Informatics, Faculty of Pharmacy, Nicolaus Copernicus University in Toru´n, Ludwik Rydygier Collegium Medicum in Bydgoszcz, D˛ebowa3, Bydgoszcz 85-626, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-525-855-401; Fax: +48-525-855-403 Academic Editor: María M. Morales Suárez-Varela Received: 28 April 2016; Accepted: 5 July 2016; Published: 29 July 2016 Abstract: Background: Energy drinks (EDs) have become widely popular among young adults and, even more so, among adolescents. Increasingly, they are consumed by athletes, particularly those who have just begun their sporting career. Uncontrolled and high consumption of EDs, in addition to other sources of caffeine, may pose a threat to the health of young people. Hence, our objective was to analyze the consumption of EDs among teenagers engaged in sports, including quantity consumed, identification of factors influencing consumption, and risks associated with EDs and EDs mixed with alcohol (AmEDs). Methods: The study involved a specially designed questionnaire, which was completed by 707 students, 14.3 years of age on average, attending secondary sports schools. Results: EDs were consumed by 69% of the young athletes, 17% of whom drank EDs quite often: every day or 1–3 times a week.
    [Show full text]
  • Alcohol Responsibly and Ending Tobacco Use, Plus Caffeine - Dr
    MHE-110 – Chapter Nine – Drinking Alcohol Responsibly and Ending Tobacco Use, plus Caffeine - Dr. Dave Shrock Chapter Nine Alcohol - an overview Alcohol and ending Tobacco Use 13th pp. 239-240; 12th pp. 232-223 • alcohol is the most widely used drug in the United (including caffeine) States • 86% of Americans consume alcohol 13th edition, pp. • 10% are heavy drinkers…who consume half of all the 241-269 alcohol produced 12th edition: • no other form of addiction or disability costs the US pp. 231-261 more than alcohol use/abuse annually Excessive alcohol use causes 88,000 deaths annually (chapter eight) twice as many as illicit drugs • lost work time, illness, insurance, accidents, medical costs take a toll on all of us…25% of all medical costs in the US are alcohol related Alcohol: The world’s most what is alcohol? dangerous drug? 13th, pp. 239-240; 12th pp. 232-233 The Lancet Medical Journal - 1 November, 2016 • alcohol is a byproduct of fermentation • In a recent article published in of vegetable or fruit pulp or ‘mash’ the British medical journal The this produces a concentration of Lancet, when considering the alcohol up to 14% drug’s damage to: • distillation is a further process by •one’s self capturing the vapors from heating • one’s family the mash, and mix this with water • the environment • proof is the measure of % of alcohol, which means the % • economic cost of alcohol is half of the ‘proof rating’ • Alcohol is the world’s most • some alcohol is 152 proof, or 71% alcohol most beers are damaging drug to individuals 8 proof, or 4% alcohol.
    [Show full text]
  • Psychostimulants Tobacco and Nicotine
    Psychostimulants Psychostimulants produce: • Increases in alertness. • Behavioral arousal. • Activation of sympathetic nervous system. • Sympathomimetic Effects Tobacco and Nicotine 1 Tobacco • Native Americans were the first to utilize tobacco. • Columbus discovered tobacco in the new world. • Tobacco use spread rapidly through Europe. Tobacco Preparations • Smoking Tobacco • Chewing Tobacco • Snuff Active ingredient is nicotine. • Named after Nicotiana. • Found only in tobacco. Behavioral / Physiological Effects of Nicotine • Pleasure/Euphoria • Sympathomimetic effects. • Increases in alertness. • Maybe overestimated? • Appetite Suppressant/Nausea • Muscle Tremor • Nesbitt’s Paradox 2 Pharmacokinetics Inhalation Absorption • Very rapid absorption. • One cigarette contains 1-5 mg nicotine. • A smoker utilizes ≈1 mg of this nicotine. • Dose control is important. • Low tar/nicotine cigarettes? Oral/Nasal Absorption • Nicotine is basic, so G.I. tract absorption is poor. • Cigarette smoke makes the saliva acidic. • Nicotine poorly absorbed in mouth. • Pipe and cigar smoke isn’t acidic. • Nicotine easily absorbed in mouth. • Nicotine from chewed tobacco and snuff absorbed through oral/nasal membranes. Nicotine easily crosses the blood brain barrier. Metabolism • 80-90% metabolized by the liver. • Remainder secreted in urine. • Half-life of ≈1 hour. 3 Pharmacodynamics - Nicotine is an agonist at nicotinic ACh receptors. • In the PNS, nicotine: • Causes adrenal medulla to release norepinephrine and epinephrine. • Sympathomimetic Effects • Activates receptors at the neuromuscular junction. • Muscle Tremor In the CNS, nicotine activates presynaptic axo-axonic receptors. A x o n 2 N T N T N T NT NT Axon 1 Dendrite NT Increases NT release from Axon 1. • Presynaptic Facilitation Many different NTs can be facilitated. • DA in the Nucleus Accumbens • Catecholamines in brainstem arousal centers.
    [Show full text]
  • The Effects of Adenosine Antagonists on Distinct Aspects of Motivated Behavior: Interaction with Ethanol and Dopamine Depletion
    Facultat de Ciències de la Salut Departament de Psicologia Bàsica, Clínica i Psicobiologia The effects of adenosine antagonists on distinct aspects of motivated behavior: interaction with ethanol and dopamine depletion. PhD Candidate Laura López Cruz Advisor Dr. Mercè Correa Sanz Co-advisor Dr. John D.Salamone Castelló, May 2016 Als meus pares i germà A Carlos AKNOWLEDGEMENTS This work was funded by two competitive grants awarded to Mercè Correa and John D. Salamone: Chapters 1-4: The experiments in the first chapters were supported by Plan Nacional de Drogas. Ministerio de Sanidad y Consumo. Spain. Project: “Impacto de la dosis de cafeína en las bebidas energéticas sobre las conductas implicadas en el abuso y la adicción al alcohol: interacción de los sistemas de neuromodulación adenosinérgicos y dopaminérgicos”. (2010I024). Chapters 5 and 6: The last 2 chapters contain experiments financed by Fundació Bancaixa-Universitat Jaume I. Spain. Project: “Efecto del ejercicio físico y el consumo de xantinas sobre la realización del esfuerzo en las conductas motivadas: Modulación del sistema mesolímbico dopaminérgico y su regulación por adenosina”. (P1.1B2010-43). Laura López Cruz was awarded a 4-year predoctoral scholarship “Fornación de Profesorado Universitario-FPU” (AP2010-3793) from the Spanish Ministry of Education, Culture and Sport. (2012/2016). TABLE OF CONTENTS ABSTRACT ...................................................................................................................1 RESUMEN .....................................................................................................................3
    [Show full text]
  • Molecular Genetics of Alzheimer's Disease
    DkYb[_Y7Y_ZiWdZCeb[YkbWh8_ebe]o 23 I[h_[i;Z_jeh >$@$=heii Institut für Biochemie Biozentrum Am Hubland 97074 Würzburg Germany Dieter B. Wildenauer (Ed.) Molecular Biology of Neuropsychiatric Disorders With 15 Figures and 8 Tables Editor Dieter B. Wildenauer Graylands Hospital Center for Clinical Research in Neuropsychiatry (CCRN) Claremont WA 6910 Australia ISBN 978-3-540-85382-4 e-ISBN 978-3-540-85383-1 ISSN 0933-1891 Library of Congress Control Number: 2008933566 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Boekhorst Design BV, The Netherlands Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface The intention of this book is to give an overview about ongoing research into molecular causes for disorders that affect the human brain. These disorders afflict mainly human behavior and are, since borders between “normal” and “abnormal” behaviors are continuous and hard to define, not always easy to diagnose.
    [Show full text]