The 100 Most Influential Inventors of All Time / Edited by Robert Curley.—1St Ed

Total Page:16

File Type:pdf, Size:1020Kb

The 100 Most Influential Inventors of All Time / Edited by Robert Curley.—1St Ed Published in 2010 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2010 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2010 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition Robert Curley: Manager, Science and Technology Rosen Educational Services Hope Lourie Killcoyne: Senior Editor and Project Manager Nelson Sá: Art Director Matthew Cauli: Designer Introduction by Stephanie Watson Library of Congress Cataloging-in-Publication Data The 100 most influential inventors of all time / edited by Robert Curley.—1st ed. p. cm.—(The Britannica guide to the world’s most influential people) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes index. ISBN 978-1-61530-042-6 (eBook) 1. Inventors—Biography—Popular works. 2. Inventions—History—Popular works. I. Curley, Robert, 1955– II. Title: One hundred most influential inventors of all time. T39.A14 2010 609.2'2—dc22 2009027248 Cover photo: David Joel/Photographer’s Choice RF/Getty Images CONTENTS Introduction 8 Cro-Magnon 17 25 Imhotep 19 Archimedes 21 Cai Lun 22 Heron of Alexandria 23 Johannes Gutenberg 26 Christiaan Huygens 31 Antonie van Leeuwenhoek 35 Benjamin Franklin 38 James Watt 48 Joseph and Étienne Montgolfier 52 Alessandro Volta 54 Joseph-Marie Jacquard 56 John Loudon McAdam 57 50 Nicéphore Niépce 59 Robert Fulton 61 Eli Whitney 66 Alois Senefelder 69 Sir William Congreve 70 René Laënnec 71 George Stephenson 75 Louis Daguerre 77 Samuel F.B. Morse 79 Charles Babbage 83 66 Sir Rowland Hill 88 Charles Goodyear 89 John Deere 91 Claude-Étienne Minié 92 Louis Braille 94 Cyrus McCormick 96 Elisha Graves Otis 99 Sir Henry Bessemer 100 Samuel Colt 103 Richard J. Gatling 105 James Starley 106 Alfred Nobel 108 95 John Wesley Hyatt 113 Ferdinand von Zeppelin 115 Georges Leclanché 118 Hiram Maxim 120 John P. Holland 123 Karl Benz and Gottlieb Daimler 124 Wilhelm Conrad Röntgen 128 Thomas Edison 129 Alexander Graham Bell 142 Otto Lilienthal 148 Emil Berliner 150 Nikola Tesla 151 Rudolf Diesel 155 119 George Washington Carver 156 James A. Naismith 160 Auguste and Louis Lumière 162 Henry Ford 163 Reginald Fessenden 168 Wilbur and Orville Wright 170 Lee de Forest 182 Guglielmo Marconi 186 Robert Goddard 192 Clarence Birdseye 196 Igor Sikorsky 197 148 Vladimir Zworykin 202 Edwin H. Armstrong 204 R. Buckminster Fuller 207 Paul Müller 212 Ernest O. Lawrence 213 Charles Stark Draper 215 Walt Disney 218 William P. Lear 224 Felix Wankel 226 John von Neumann 227 Chester F. Carlson 233 Grace Murray Hopper 234 235 Frank Whittle 236 John Mauchly and J. Presper Eckert 237 Edward Teller 240 Michael DeBakey 244 Willard Libby 246 Edwin Herbert Land 249 Virginia Apgar 251 Leo Fender 252 William Shockley, John Bardeen, and Walter Brattain 253 Wernher von Braun 257 Charles Townes 261 Gertrude B. Elion 263 308 Frederick Sanger 264 Tom Kilburn 270 Stephanie Kwolek 272 Douglas Engelbart 274 Robert Noyce 276 Ron Toomer 279 Heinrich Rohrer and Gerd Binnig 280 Paul Lauterbur and Peter Mansfield 283 Robert Kahn and Vint Cerf 286 315 Ian Wilmut 290 Rodney Brooks 297 Steve Jobs and Stephen Wozniak 299 Tim Berners-Lee 308 Bill Gates 310 Linus Torvalds 313 Sergey Brin and Larry Page 315 Glossary 318 For Further Reading 322 Index 324 INTRODUCTION 7 Introduction 7 ust a few hundred years ago, life was far different than it Jis today. When people wanted to travel or communicate, they had to go on foot or horseback. A journey of just a few miles by this method could be a long, arduous process. Whatever people owned—from clothing to tools—had to be made by hand. Work was manual, laborious, and often tedious. Illness was a constant threat; diseases rapidly spread through unsanitary conditions and were difficult to treat with the rudimentary medicines available. Today, life in the United States and other developed countries is about ease and convenience. Communication is global and instantaneous. Transportation can carry people across states, countries, and even entire continents in a matter of hours. Industry has been automated, pro- viding people with plenty of time outside of work to enjoy leisure pursuits. Modern medical treatments have enabled people to stay healthy well into their eighth, ninth, or even tenth decade. Life has been transformed over the years through the efforts of the men and women who had the brilliance, diligence, and creativity to come up with new and better ways of doing things. As detailed throughout these pages, their inventions spawned many more inventions, speeding up the pace of progress even further. Alexander Graham Bell’s fascination with the idea of sending sound down a wire from the speaker to the listener gave birth to the telephone, which ultimately led to the cell phone, fax machine, modem, and a communication system that now links the entire globe. These inventions, like many others, have clearly improved life by keeping people healthier, helping them to communicate and work more efficiently, and allowing them to travel farther. X-rays allowed doctors to look inside the human body to treat disease and injury. The electric light illuminated the darkness so people could 9 7 The 100 Most Influential Inventors of All Time 7 work (and play) at night. Braille made it possible for blind people to read. However, some inventions, while having their obvious benefits, have also had their pitfalls. Before Eli Whitney invented the cotton gin in 1793, separating cotton lint from its seeds was a 10-hour, labour-intensive ordeal. Whitney’s invention transformed cotton production into a rapid process that for the first time made cotton farming a highly profitable business. Yet the cotton gin also pro- longed slavery, as cotton plantations needed a larger labour force to keep up with increased production demands. Other inventions were controversial because of their potential for destruction. Edward Teller, father of the hydrogen bomb, was described by one scientist as being one of the “most thoughtful statesmen of science.” However, another contemporary referred to Teller as “a danger to all that’s important,” and claimed that the world would have been better off without him. In 1948, Paul Hermann Müller received a Nobel Prize for discovering the toxic effects on insects of the chemical compound known as DDT, a pesticide that efficiently wiped out the insects that carry deadly diseases such as malaria, yellow fever, and typhus. DDT was initially hailed as a “miracle” pesticide. Yet by the early 1970s it had been banned from public use in the United States. Health officials had dis- covered that while DDT was killing insects, it was also accumulating in other wildlife, notably falcons and eagles, and dangerously lowering their reproduction rate. Even the most groundbreaking and world-changing inventions were not always recognized as such when they were introduced to the public. When Rutherford B. Hayes saw a demonstration of Alexander Graham Bell’s telephone in 1876, the president’s response was less than enthusiastic. “That’s an amazing invention, but who would 10 7 Introduction 7 ever want to use one of them?” he scoffed. In 1968, the audience attending a computer conference at the San Francisco Civic Auditorium likely didn’t know what to make of Douglas Engelbart’s invention—a small wooden box with a button that moved a cursor on an attached machine. His “mouse,” so named for its tail-like cable, now enables virtually every home and business computer user to navigate around their computer screens. Inventors themselves have sometimes been skeptical about the ability of their own creations to endure. Despite the public excitement that greeted their Cinèmatographe motion picture machine when it was released in 1895, the Lumière brothers felt that their invention was just a fad. In fact, Louis Lumière referred to the cinema as “an invention without a future.” In spite of the Lumière brothers’ initial cynicism, film endures as one of the most popular art forms today. WHAT INSPIRES INVENTION? The old saying, “Necessity is the mother of invention,” couldn’t be more true. Inventors have had a knack for rec- ognizing a need or problem in society and then discovering a way to fill that need or solve that problem. In the 15th century, as the number of universities in Europe grew and public literacy spread, a more efficient method was needed for reproducing books—a demand that was met by Johannes Gutenberg’s printing press. Sometimes it was the inventor’s own necessity that gave birth to invention. Frustrated at having to change pairs of glasses whenever he switched from reading to viewing objects at a distance, Benjamin Franklin invented a new type of glasses—bifocals—that could easily accom- modate both views. 11 7 The 100 Most Influential Inventors of All Time 7 Intelligence and curiosity are unquestionably important assets for inventors, but having an advanced degree—or even a formal education—has never been a prerequisite. Thomas Edison studied at home with his mother. Orville and Wilbur Wright never finished high school. George Washington Carver, who began life as a slave, taught him- self to read from the only book he possessed—Webster’s Elementary Spelling Book.
Recommended publications
  • The Early Years of the Acoustic Phonograph Its Developmental Origins and Fall from Favor 1877-1929
    THE EARLY YEARS OF THE ACOUSTIC PHONOGRAPH ITS DEVELOPMENTAL ORIGINS AND FALL FROM FAVOR 1877-1929 by CARL R. MC QUEARY A SENIOR THESIS IN HISTORICAL AMERICAN TECHNOLOGIES Submitted to the General Studies Committee of the College of Arts and Sciences of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Accepted Director of General Studies March, 1990 0^ Ac T 3> ^"^^ DEDICATION No. 2) This thesis would not have been possible without the love and support of my wife Laura, who has continued to love me even when I had phonograph parts scattered through­ out the house. Thanks also to my loving parents, who have always been there for me. The Early Years of the Acoustic Phonograph Its developmental origins and fall from favor 1877-1929 "Mary had a little lamb, its fleece was white as snov^. And everywhere that Mary went, the lamb was sure to go." With the recitation of a child's nursery rhyme, thirty-year- old Thomas Alva Edison ushered in a bright new age--the age of recorded sound. Edison's successful reproduction and recording of the human voice was the end result of countless hours of work on his part and represented the culmination of mankind's attempts, over thousands of years, to capture and reproduce the sounds and rhythms of his own vocal utterances as well as those of his environment. Although the industry that Edison spawned continues to this day, the phonograph is much changed, and little resembles the simple acoustical marvel that Edison created.
    [Show full text]
  • Thomas Edison Vs Nikola Tesla THOMAS EDISON VS NIKOLA TESLA
    M C SCIENTIFIC RIVALRIES PHERSON AND SCANDALS In the early 1880s, only a few wealthy people had electric lighting in their homes. Everyone else had to use more dangerous lighting, such as gas lamps. Eager companies wanted to be the first to supply electricity to more Americans. The early providers would set the standards—and reap great profits. Inventor THOMAS EDISON already had a leading role in the industry: he had in- vented the fi rst reliable electrical lightbulb. By 1882 his Edison Electric Light Company was distributing electricity using a system called direct current, or DC. But an inventor named NIKOLA TESLA challenged Edison. Tesla believed that an alternating cur- CURRENTS THE OF rent—or AC—system would be better. With an AC system, one power station could deliver electricity across many miles, compared to only about one mile for DC. Each inventor had his backers. Business tycoon George Westinghouse put his money behind Tesla and built AC power stations. Meanwhile, Edison and his DC backers said that AC could easily electrocute people. Edison believed this risk would sway public opinion toward DC power. The battle over which system would become standard became known as the War of the Currents. This book tells the story of that war and the ways in which both kinds of electric power changed the world. READ ABOUT ALL OF THE OF THE SCIENTIFIC RIVALRIES AND SCANDALS BATTLE OF THE DINOSAUR BONES: Othniel Charles Marsh vs Edward Drinker Cope DECODING OUR DNA: Craig Venter vs the Human Genome Project CURRENTS THE RACE TO DISCOVER THE
    [Show full text]
  • Army Radio Communication in the Great War Keith R Thrower, OBE
    Army radio communication in the Great War Keith R Thrower, OBE Introduction Prior to the outbreak of WW1 in August 1914 many of the techniques to be used in later years for radio communications had already been invented, although most were still at an early stage of practical application. Radio transmitters at that time were predominantly using spark discharge from a high voltage induction coil, which created a series of damped oscillations in an associated tuned circuit at the rate of the spark discharge. The transmitted signal was noisy and rich in harmonics and spread widely over the radio spectrum. The ideal transmission was a continuous wave (CW) and there were three methods for producing this: 1. From an HF alternator, the practical design of which was made by the US General Electric engineer Ernst Alexanderson, initially based on a specification by Reginald Fessenden. These alternators were primarily intended for high-power, long-wave transmission and not suitable for use on the battlefield. 2. Arc generator, the practical form of which was invented by Valdemar Poulsen in 1902. Again the transmitters were high power and not suitable for battlefield use. 3. Valve oscillator, which was invented by the German engineer, Alexander Meissner, and patented in April 1913. Several important circuits using valves had been produced by 1914. These include: (a) the heterodyne, an oscillator circuit used to mix with an incoming continuous wave signal and beat it down to an audible note; (b) the detector, to extract the audio signal from the high frequency carrier; (c) the amplifier, both for the incoming high frequency signal and the detected audio or the beat signal from the heterodyne receiver; (d) regenerative feedback from the output of the detector or RF amplifier to its input, which had the effect of sharpening the tuning and increasing the amplification.
    [Show full text]
  • The Lunar Society of Birmingham and the Practice of Science in 18Th Century Great Britain
    Union College Union | Digital Works Honors Theses Student Work 6-2011 The unL ar Society of Birmingham and the Practice of Science in 18th Century Great Britain Scott H. Zurawel Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the History of Science, Technology, and Medicine Commons Recommended Citation Zurawel, Scott H., "The unL ar Society of Birmingham and the Practice of Science in 18th Century Great Britain" (2011). Honors Theses. 1092. https://digitalworks.union.edu/theses/1092 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. i THE LUNAR SOCIETY OF BIRMINGHAM AND THE PRACTICE OF SCIENCE IN 18TH CENTURY GREAT BRITAIN: A STUDY OF JOSPEH PRIESTLEY, JAMES WATT AND WILLIAM WITHERING By Scott Henry Zurawel ******* Submitted in partial fulfillment Of the requirements for Honors in the Department of History UNION COLLEGE March, 2011 ii ABSTRACT Zurawel, Scott The Lunar Society of Birmingham and the Practice of Science in Eighteenth-Century Great Britain: A Study of Joseph Priestley, James Watt, and William Withering This thesis examines the scientific and technological advancements facilitated by members of the Lunar Society of Birmingham in eighteenth-century Britain. The study relies on a number of primary sources, which range from the regular correspondence of its members to their various published scientific works. The secondary sources used for this project range from comprehensive books about the society as a whole to sources concentrating on particular members.
    [Show full text]
  • The Power of Light
    David N Payne Dedicated to: Guglielmo Marconi and Charles Kao Director ORC University of Southampton 1909 2009 Nobel Laureates in Physics Wireless and optical fibres The power of light GPS systems, synchronous data networks, cell phone telephony, time stamping financial trades Large scale interferometers for telescopes Optical gyroscopes Data centres/computer interconnects Financial traders You can’t beat vacuum for loss, speed of light or stability! The Very Large Telescope Interferometer (VLTI) on Paranal Mountain Data Centre Interconnection Information flow/unit area and latency is key in supercomputers and data centres 20,000 km of fibre per data centre in Facebook alone! Vacuum transit time is 30% lower High-performance: applications in inertial guidance, navigation, platform stabilization, GPS flywheeling, etc. Lower-performance: Consumer / industrial applications in Performancemotion control, industrial limited processing, byconsumer glass electronics, core etc. Periodic lattice of holes Hollow air core Advantage: Typically less than 0.1% optical power in cladding. Ultra-low nonlinearity, lower loss? Vacuum fibre technology Fibres that largely ignore the materials from which they are made Power in glass < 0.01% low nonlinearity Transmission loss < 0.01 dB/m As you wouldLow Latencyexpect (30% from lower) vacuum! Phase insensitive Radiation hard IR transmitting The new anti-resonant fibre 22.3 µm 40.2 µm Width = 359.6 nm 20μm OFC 2016, Los Angeles, PDPTh5A.3 Low Latency data communications • Data transmission at 99.7% the speed of light in vacuum • ‘Only’ 69.4% in a conventional fibre Latency savings (vs conventional fibres): 1m 1.54 ns 100m 154 ns 1km 1.54 µs 100km 154 µs Phase Insensitive Fibres The phase of a signal in a fibre changes with temperature owing to: • Change in refractive index • Change in fibre length • Vacuum fibre temperature sensitivity 2 ps/km/K • 18.5 times smaller than conventional fibres Dr Radan Slavik Slavik et al., Scientific Reports 2015.
    [Show full text]
  • Subwavelength Resolution Fourier Ptychography with Hemispherical Digital Condensers
    Subwavelength resolution Fourier ptychography with hemispherical digital condensers AN PAN,1,2 YAN ZHANG,1,2 KAI WEN,1,3 MAOSEN LI,4 MEILING ZHOU,1,2 JUNWEI MIN,1 MING LEI,1 AND BAOLI YAO1,* 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710071, China 4Xidian University, Xi’an 710071, China *[email protected] Abstract: Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3−0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500−1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2, corresponding to an SBP of 245 megapixels.
    [Show full text]
  • 1908 Journal
    1 SUPREME COURT OF THE UNITED STATES. Monday, October 12, 1908. The court met pursuant to law. Present: The Chief Justice, Mr. Justice Harlan, Mr. Justice Brewer, Mr. Justice White, Mr. Justice Peckham, Mr. Justice McKenna, Mr. Justice Holmes, Mr. Justice Day and Mr. Justice Moody. James A. Fowler of Knoxville, Tenn., Ethel M. Colford of Wash- ington, D. C., Florence A. Colford of Washington, D. C, Charles R. Hemenway of Honolulu, Hawaii, William S. Montgomery of Xew York City, Amos Van Etten of Kingston, N. Y., Robert H. Thompson of Jackson, Miss., William J. Danford of Los Angeles, Cal., Webster Ballinger of Washington, D. C., Oscar A. Trippet of Los Angeles, Cal., John A. Van Arsdale of Buffalo, N. Y., James J. Barbour of Chicago, 111., John Maxey Zane of Chicago, 111., Theodore F. Horstman of Cincinnati, Ohio, Thomas B. Jones of New York City, John W. Brady of Austin, Tex., W. A. Kincaid of Manila, P. I., George H. Whipple of San Francisco, Cal., Charles W. Stapleton of Mew York City, Horace N. Hawkins of Denver, Colo., and William L. Houston of Washington, D. C, were admitted to practice. The Chief Justice announced that all motions noticed for to-day would be heard to-morrow, and that the court would then commence the call of the docket, pursuant to the twenty-sixth rule. Adjourned until to-morrow at 12 o'clock. The day call for Tuesday, October 13, will be as follows: Nos. 92, 209 (and 210), 198, 206, 248 (and 249 and 250), 270 (and 271, 272, 273, 274 and 275), 182, 238 (and 239 and 240), 286 (and 287, 288, 289, 290, 291 and 292) and 167.
    [Show full text]
  • Soho Depicted: Prints, Drawings and Watercolours of Matthew Boulton, His Manufactory and Estate, 1760-1809
    SOHO DEPICTED: PRINTS, DRAWINGS AND WATERCOLOURS OF MATTHEW BOULTON, HIS MANUFACTORY AND ESTATE, 1760-1809 by VALERIE ANN LOGGIE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of History of Art College of Arts and Law The University of Birmingham January 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT This thesis explores the ways in which the industrialist Matthew Boulton (1728-1809) used images of his manufactory and of himself to help develop what would now be considered a ‘brand’. The argument draws heavily on archival research into the commissioning process, authorship and reception of these depictions. Such information is rarely available when studying prints and allows consideration of these images in a new light but also contributes to a wider debate on British eighteenth-century print culture. The first chapter argues that Boulton used images to convey messages about the output of his businesses, to draw together a diverse range of products and associate them with one site. Chapter two explores the setting of the manufactory and the surrounding estate, outlining Boulton’s motivation for creating the parkland and considering the ways in which it was depicted.
    [Show full text]
  • Introduction to Light Microscopy
    Introduction to light microscopy A CAMDU training course Claire Mitchell, Imaging specialist, L1.01, 08-10-2018 Contents 1.Introduction to light microscopy 2.Different types of microscope 3.Fluorescence techniques 4.Acquiring quantitative microscopy data 1. Introduction to light microscopy 1.1 Light and its properties 1.2 A simple microscope 1.3 The resolution limit 1.1 Light and its properties 1.1.1 What is light? An electromagnetic wave A massless particle AND γ commons.wikimedia.org/wiki/File:EM-Wave.gif www.particlezoo.net 1.1.2 Properties of waves Light waves are transverse waves – they oscillate orthogonally to the direction of propagation Important properties of light: wavelength, frequency, speed, amplitude, phase, polarisation upload.wikimedia.org 1.1.3 The electromagnetic spectrum 퐸푝ℎ표푡표푛 = ℎν 푐 = λν 퐸푝ℎ표푡표푛 = photon energy ℎ = Planck’s constant ν = frequency 푐 = speed of light λ = wavelength pion.cz/en/article/electromagnetic-spectrum 1.1.4 Refraction Light bends when it encounters a change in refractive index e.g. air to glass www.thetastesf.com files.askiitians.com hyperphysics.phy-astr.gsu.edu/hbase/Sound/imgsou/refr.gif 1.1.5 Diffraction Light waves spread out when they encounter an aperture. electron6.phys.utk.edu/light/1/Diffraction.htm The smaller the aperture, the larger the spread of light. 1.1.6 Interference When waves overlap, they add together in a process called interference. peak + peak = 2 x peak constructive trough + trough = 2 x trough peak + trough = 0 destructive www.acs.psu.edu/drussell/demos/superposition/superposition.html 1.2 A simple microscope 1.2.1 Using lenses for refraction 1 1 1 푣 = + 푚 = physicsclassroom.com 푓 푢 푣 푢 cdn.education.com/files/ Light bends as it encounters each air/glass interface of a lens.
    [Show full text]
  • The Marriage That Almost Was Western Union Has Always Been R.Idiculed for Rejecting the All Telephone
    RETROSPECTIVE .Innovation The marriage that almost was Western Union has always been r.idiculed for rejecting the telephone. But what actually happened wasn't so ridiculous after all The hirth of the telephone.,-one hundred years ago railway and illuminating gas to Cambridge, Mass. this month-is a fascinating story of the geJ;Jius and Long intrigued by telegraphy, he decided to do persistence of on.e man. In addition, it is an instruc­ something about what he called "this monopoly tive demonstration of how an industrial giant, in with its inflated capital which serves its stockhold­ this case the Western Union Telegraph Co., can ers better than the 'public and whose:rates are ex­ miss its chance to foster an industry-creating orbitant and prohibiting of many kinds of busi­ breakthrough-something that has happened again ness." Between 1868 and 1874, he lobbied unceas­ and again in electronics and other fields. ingly, shuttling back and forth betweep. homes in Between ·1875 and 1879, Western Union's chiefs Boston and Washington. for a private "postal tele­ engaged in an intricate minuet with Alexander graph company" to be chartered by Congress but Graham Bell and his associates. On more than one with Hubbard and some of his friends among the occasion, the telegraph colossus came excruciating­ incorporators. As Hubbard envisioned it, the com­ ly close to absorbing the small group of ~ntre­ pany would build telegraph lines along the nation's preneurs, That the absorption was finally avoided rail and post roads and contract with the Post was probably the result of a technological gamble Office Department to send telegrams on its wires ~t that simply didn't payoff, as rates roughly half those being charged by Western ••• The place: the ollie of well as a clash of personali­ Union.
    [Show full text]
  • Clarence Birdseye's Outrageous Idea About Frozen Food Online
    PJaze [Download ebook] Frozen in Time: Clarence Birdseye's Outrageous Idea About Frozen Food Online [PJaze.ebook] Frozen in Time: Clarence Birdseye's Outrageous Idea About Frozen Food Pdf Free Mark Kurlansky audiobook | *ebooks | Download PDF | ePub | DOC Download Now Free Download Here Download eBook #237930 in Books 2014-11-11 2014-11-11Original language:EnglishPDF # 1 8.25 x .50 x 5.50l, .81 #File Name: 0385372442176 pages | File size: 30.Mb Mark Kurlansky : Frozen in Time: Clarence Birdseye's Outrageous Idea About Frozen Food before purchasing it in order to gage whether or not it would be worth my time, and all praised Frozen in Time: Clarence Birdseye's Outrageous Idea About Frozen Food: 2 of 2 people found the following review helpful. Makes you appreciate the genius of frozen vegetablesBy Forest ReaderWhile this is a youth book and I'm anything but, I still enjoyed it. I had never thought about how those boxes of frozen vegetables we bought when I was young had come about. (You can still buy them, but bags are more common now.) Nor had I any idea how innovative they were. Very interesting.1 of 2 people found the following review helpful. Three StarsBy angelA lot of information... but too much info on other things in his life ...rather than his personal journey0 of 0 people found the following review helpful. A parent's review: Large font, easy readingBy M. HeissThis book is geared to the level where my sixth grader can easily manage it independently. That's good, since it's a biography and a good retelling of the spirit of American entrepreneurship.
    [Show full text]
  • LEARNING in the 21ST CENTURY Author Photograph : © Monsitj/Istockphoto
    FRANÇOIS TADDEI LEARNING IN THE 21ST CENTURY Author photograph : © Monsitj/iStockphoto © Version française, Calmann-Lévy, 2018 SUMMARY FRANÇOIS TADDEI with Emmanuel Davidenkoff LEARNING IN THE 21ST CENTURY Translated from French by Timothy Stone SUMMARY SUMMARY To all those who have taught me so much. SUMMARY SUMMARY If you want to build a ship, don’t drum up people to collect wood and don’t assign them tasks and work, but rather teach them to long for the endless immensity of the sea...” Antoine de SAINT-EXUPÉRY, Citadelle SUMMARY Summary Prologue ......................................................................................................................................................... 11 Introduction .................................................................................................................................................13 1. Why will we learn differently st in the 21 century? ................................................................................................21 2. What i’ve learned ...........................................................................................55 3. New ways of teaching .........................................................................79 4. Before you can learn, you have to unlearn ...................................................................................113 5. Learn to ask (yourself) good questions ........................................................................................................201 6. A how-to guide for a learning planet
    [Show full text]