A2.2 Biomarkers of Vitamin a Status: What Do They Mean? Sherry A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vitamin A: History, Current Uses, and Controversies M
Vitamin A: History, Current Uses, and Controversies M. Shane Chapman, MD Vitamin A is required for the proper functioning of many important metabolic and physio- logic activities, including vision, gene transcription, the immune system and skin cell differentiation. Both excessive and deficient levels of vitamin A lead to poor functioning of many human systems. The biologically active form, retinoic acid, binds to nuclear receptors that facilitate transcription that ultimately leads to it’s physiological effects. Retinoids are derivatives of vitamin A that are medications used to treat acne vulgaris, psoriasis, ichthyosis (and other disorders of keratinization), skin cancer prevention as well as several bone marrow derived neoplasias. Systemic retinoids are teratogenic and have to be prescribed with caution and close oversight. Other potential adverse events are contro- versial. These include the relationship of retinoid derivatives in sunscreens, their effects on bone mineral density, depression and suicidal ideation and inflammatory bowel disease. These controversies will be discussed in detail. Semin Cutan Med Surg 31:11-16 © 2012 Published by Elsevier Inc. KEYWORDS vitamin A, retinoids, carotenoids, sunscreens, bone metabolism, teratogenicity, depression, suicidal ideation, istotretinoin, inflammatory bowel disease. itamin A is a fat-soluble vitamin that is required for the molecules, retinal, for both low-light- and color vision. Ret- Vproper functioning of a diverse array of metabolic and inol is also converted to retinoic acid, which is a hormone- physiologic activities. Vision, hematopoiesis, embryonic de- like growth factor important for epithelial cell growth and velopment, skin cell differentiation, immune system func- differentiation. It is required for skin and bone health, but in tion, and gene transcription all require vitamin A. -
Effect of Cooking Loss in the Assessment of Vitamin Intake for Epidemiological Data in Japan
European Journal of Clinical Nutrition (2011) 65, 546–552 & 2011 Macmillan Publishers Limited All rights reserved 0954-3007/11 www.nature.com/ejcn ORIGINAL ARTICLE Effect of cooking loss in the assessment of vitamin intake for epidemiological data in Japan M Kobayashi1,2, HY Adachi2, J Ishihara2,3 and S Tsugane2 for the JPHC FFQ Validation Study Group 1Department of Food Science, Faculty of Home Economics, Otsuma Women’s University, Tokyo, Japan; 2Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan and 3Department of Nutrition, Junior College of Tokyo University of Agriculture, Tokyo, Japan Background/Objectives: The effect of cooking loss on vitamin intake is an important consideration in dietary and epidemiological studies in Japanese. However, because few published food values have considered cooking effect, allowing for cooking loss in the assessment of vitamin intake in Japan has been difficult. Subjects/Methods: Seven-day dietary records and a fasting blood sample were collected from 102 men and 113 women in August of 1994 or 1995. Vitamin intake were estimated using two food databases, one composed of raw food only and the second of cooked food. Estimates were compared with blood levels. Results: Water-soluble vitamin intake using a food database including cooked food was lower than intakes estimated using a database composed of raw food only, except for pantothenic acid and vitamin B12 intake. In particular, vitamin B1 intake was 18.9% lower in men and 16.8% lower in women. However, when subjects were classified into the same and adjacent categories by joint classification by quintiles, appreciable change in ranking of a subject was not observed. -
Is There an Ideal Diet to Protect Against Iodine Deficiency?
nutrients Review Is There an Ideal Diet to Protect against Iodine Deficiency? Iwona Krela-Ka´zmierczak 1,† , Agata Czarnywojtek 2,3,†, Kinga Skoracka 1,* , Anna Maria Rychter 1 , Alicja Ewa Ratajczak 1 , Aleksandra Szymczak-Tomczak 1, Marek Ruchała 2 and Agnieszka Dobrowolska 1 1 Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Heliodor Swiecicki Hospital, 60-355 Poznan, Poland; [email protected] (I.K.-K.); [email protected] (A.M.R.); [email protected] (A.E.R.); [email protected] (A.S.-T.); [email protected] (A.D.) 2 Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.C.); [email protected] (M.R.) 3 Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland * Correspondence: [email protected]; Tel.: +48-665-557-356 or +48-8691-343; Fax: +48-8691-686 † These authors contributed equally to this work. Abstract: Iodine deficiency is a global issue and affects around 2 billion people worldwide, with preg- nant women as a high-risk group. Iodine-deficiency prevention began in the 20th century and started with global salt iodination programmes, which aimed to improve the iodine intake status globally. Although it resulted in the effective eradication of the endemic goitre, it seems that salt iodination did not resolve all the issues. Currently, it is recommended to limit the consumption of salt, which is the main source of iodine, as a preventive measure of non-communicable diseases, such as hypertension or cancer the prevalence of which is increasing. -
Plant-Based Nutrition Leaflet
Calcium There are many plant-based sources of calcium. The good news for vegans is that, due to how the mineral is absorbed, vegetables can be a better source of calcium than dairy. Plant-based nutrition Our top tip for reaching your daily ‘kale-cium’ intake is to include portions of green and leafy vegetables in your diet. Calcium can also be found in fortified foods like some plant Healthy vegan living milks and tofu, oranges and dried fruits. for everyone Vitamin D helps our body to absorb and retain calcium. Therefore, a partnership of sufficient vitamin D and calcium is important in maintaining healthy bones. As well as getting healthy sun exposure, vitamin D is added to foods such as fortified soymilk, juice and breakfast cereals. Vitamin B12 All vegans need to ensure they are getting sufficient B12. Everyone over the age of 50 (whether vegan or not) requires reliable sources of vitamin B12 from fortified foods or supplements – so vegans, as usual, are just getting ahead of the game. The only reliable animal-free sources of vitamin B12 are fortified foods and B12 supplements. Vitamin B12, whether in supplements, fortified foods, or animal products, comes through micro-organisms. Look for B12-fortified foods such as plant milks, spreads, cereals and nutritional yeast (the latter is much more appetising than it sounds). The Vegan Society’s Veg1 supplement has been specifically formulated for vegans, and contains your Recommended Daily Allowance of vitamin B12. Iron It’s straightforward to obtain enough iron when you eat a rainbow of vegetables, fruits and other whole plant foods each day. -
R Graphics Output
Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 ) -
Meet Lycopene Prostate Cancer Is One of the Leading Causes of Cancer Death Among Men in the United States
UCLA Nutrition Noteworthy Title Lycopene and Mr. Prostate: Best Friends Forever Permalink https://escholarship.org/uc/item/5ks510rw Journal Nutrition Noteworthy, 5(1) Author Simzar, Soheil Publication Date 2002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meet Lycopene Prostate cancer is one of the leading causes of cancer death among men in the United States. Dietary factors are considered an important risk factor for the development of prostate cancer in addition to age, genetic predisposition, environmental factors, and other lifestyle factors such as smoking. Recent studies have indicated that there is a direct correlation between the occurrence of prostate cancer and the consumption of tomatoes and tomato-based products. Lycopene, one of over 600 carotenoids, is one of the main carotenoids found in human plasma and it is responsible for the red pigment found in tomatoes and other foods such as watermelons and red grapefruits. It has been shown to be a very potent antioxidant, with oxygen-quenching ability greater than any other carotenoid. Recent research has indicated that its antioxidant effects help lower the risk of heart disease, atherosclerosis, and different types of cancer-especially prostate cancer. Lycopene's Characteristics Lycopene is on of approximately 600 known carotenoids. Carotenoids are red, yellow, and orange pigments which are widely distributed in nature and are especially abundant in yellow- orange fruits and vegetables and dark green, leafy vegetables. They absorb light in the 400- 500nm region which gives them a red/yellow color. Only green plants and certain microorganisms such as fungi and algae can synthesize these pigments. -
Metabolism in the Aging Retina and Retinal Degeneration
Hindawi Oxidative Medicine and Cellular Longevity Volume 2020, Article ID 2692794, 12 pages https://doi.org/10.1155/2020/2692794 Review Article Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration Ravirajsinh N. Jadeja ,1 Menaka C. Thounaojam ,2,3 Manuela Bartoli ,2,3 and Pamela M. Martin 1,2,3 1Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA 2Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA 3James and Jean Culver Vision Discovery Institute and Medical College of Georgia at Augusta University, Augusta, GA, USA Correspondence should be addressed to Ravirajsinh N. Jadeja; [email protected] and Pamela M. Martin; [email protected] Received 8 February 2020; Accepted 17 April 2020; Published 11 May 2020 Academic Editor: Ryoji Nagai Copyright © 2020 Ravirajsinh N. Jadeja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. -
Guidelines on Food Fortification with Micronutrients
GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry. -
Serum Retinal and Retinoic Acid Predict the Development of Type 2 Diabetes Mellitus in Korean Subjects with Impaired Fasting Glucose from the KCPS-II Cohort
H OH metabolites OH Article Serum Retinal and Retinoic Acid Predict the Development of Type 2 Diabetes Mellitus in Korean Subjects with Impaired Fasting Glucose from the KCPS-II Cohort Youngmin Han 1 , Yeunsoo Yang 2 , Minjoo Kim 3 , Sun Ha Jee 2, Hye Jin Yoo 4,* and Jong Ho Lee 1,4,* 1 National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea; [email protected] 2 Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; [email protected] (Y.Y.); [email protected] (S.H.J.) 3 Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, Daejeon 34430, Korea; [email protected] 4 Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected] (H.J.Y.); [email protected] (J.H.L.); Tel.: +82-2-364-9605 (H.J.Y.); +82-2-2123-3122 (J.H.L.); Fax: +82-2-364-9605 (H.J.Y. & J.H.L.) Abstract: We aimed to investigate whether retinal and retinoic acid (RA), which are newly discovered biomarkers from our previous research, reliably predict type 2 diabetes mellitus (T2DM) development in subjects with impaired fasting glucose (IFG). Among the Korean Cancer Prevention Study (KCPS)- II cohort, subjects were selected and matched by age and sex (IFG-IFG group, n = 100 vs. IFG-DM group, n = 100) for study 1. For real-world validation of two biomarkers (study 2), other participants in the KCPS-II cohort who had IFG at baseline (n = 500) were selected. -
(12) Patent Application Publication (10) Pub. No.: US 2012/0202780 A1 Gavin Et Al
US 20120202780A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0202780 A1 Gavin et al. (43) Pub. Date: Aug. 9, 2012 (54) CARRIER COMPOSITION Publication Classification (76) Inventors: Paul David Gavin, Chadstone (51) Int. Cl. (AU); Mahmoud El-Tamimy, A6II 47/24 (2006.01) Meadow Heights (AU); Jeremy A6II 3/196 (2006.01) James Cottrell, Caulfield South A6IP5/00 (2006.01) (AU); Giacinto Gaetano, South A 6LX 3/573 (2006.01) Melbourne (AU); Nicholas John A6IP 23/00 (2006.01) Kennedy, Boronia (AU) A6IP 29/00 (2006.01) A6II 3/167 (2006.01) (21) Appl. No.: 13/501,494 A63L/407 (2006.01) (22) PCT Fled: Dec. 22, 2010 (52) U.S. Cl. ......... 514/180: 514/785: 514/788: 514/772: 514/626; 514/567; 514/413: 514/179 (86) PCT NO.: S371 (c)(1), (57) ABSTRACT (2), (4) Date: Apr. 12, 2012 A carrier composition of the present invention comprises a phosphate compound of an electron transfer agent and a rela Related U.S. Application Data tively high concentration of a polar protic solvent. A biologi (60) Provisional application No. 61/289,507, filed on Dec. cally active compound may be formulated with a carrier com 23, 2009. position of the present invention to provide a formulation. Patent Application Publication Aug. 9, 2012 Sheet 1 of 5 US 2012/0202780 A1 - - if solvent E. -ie-20% solvent 3. ". S. .t E FGURE 1 Patent Application Publication Aug. 9, 2012 Sheet 2 of 5 US 2012/0202780 A1 -H 10 LC2 s -C- 20 ulcm2 . - a 30 ulcm2 t E re FIGURE 2A HO licm2 80i -o- 20 ul/cm2 'i -A-30 ul/cm2 140 EO 10 8 8 4) O O FIGURE 2B Patent Application Publication Aug. -
Vitamin and Mineral Safety 3Rd Edition (2013) Council for Responsible Nutrition (CRN)
EXCERPTED FROM: Vitamin and Mineral Safety 3rd Edition (2013) Council for Responsible Nutrition (CRN) www.crnusa.org Vitamin B12 Introduction Vitamin B12 helps maintain the body’s nervous system and blood cells and supports the production of DNA. Vitamin B12 also helps prevents a type of anemia and has been termed the “anti-pernicious anemia dietary factor.” Vitamin B12 is also the only known physiologically important compound that contains cobalt, and therefore the various forms of vitamin B12 are known collectively as cobalamins. Vitamin B12 is a cofactor in two enzymes that are fundamental in facilitating growth in humans. In the methylcobalamin form, vitamin B12 is the direct cofactor for methionine synthetase, the enzyme that recycles homocysteine back to methionine. Here, vitamin B12 and folic acid have closely related roles in one-carbon metabolism. In the adenosylcobalamin form, vitamin B12 is the cofactor in methylmalonyl-coenzyme A mutase. Both reactions are involved in promoting the rapid growth and proliferation of bone marrow cells and ultimately red blood cells (Expert Group on Vitamins and Minerals [EVM] 2003). Vitamin B12 is essential for the function and maintenance of the central nervous system, and severe deficiency in persons with pernicious anemia produces the neurological disease of posterolateral spinal cord degeneration (Herbert and Das 1994). The direct cause of pernicious anemia, in fact, is vitamin B12 deficiency, but the underlying defect is the absence of an intrinsic factor produced by specific stomach cells and needed for intestinal absorption of vitamin B12. Without this intrinsic factor, absorption is greatly reduced or fails, and a severe and persistent deficiency develops that is not preventable by the usual dietary levels of vitamin B12. -
Vitamin a Derivatives As Treatment Options for Retinal Degenerative Diseases
Nutrients 2013, 5, 2646-2666; doi:10.3390/nu5072646 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases Lindsay Perusek and Tadao Maeda * Department of Ophthalmology & Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-216-368-6103; Fax: +1-216-368-3171. Received: 7 May 2013; in revised form: 5 June 2013 / Accepted: 13 June 2013 / Published: 12 July 2013 Abstract: The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP).