Chapter 6: Climate Change Mitigation and Energy LONDON ENVIRONMENT STRATEGY 185
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydropower Or Private Power
HYDROPOWER OR PRIVATE POWER River Development Resistance in the Chilean Landscape Lydia M. Bleifuss A thesis written in partial fulfillment of the requirements for the degree of Bachelor of Arts. Department of Environmental Studies Lewis & Clark College Portland, Oregon May 2016 DEDICATION To Ella Bump 1 ACKNOWLEDGEMENTS I would fist like to extend my greatest appreciation to those who made time to speak with me in Chile, despite my less than impressive Spanish. This thesis would not have been possible without the insights of both the interviewees who are cited here, and the many other conversations that filled my travels. Special thanks to Thomas, Anthony, Gabriel, Adele, Coto, Matias, Raketa, and Rocio for their hospitality and kindness. I would also like to thank the SAAB Research Grant Board and the Renewable Energy Fee Fund Committee for the finances to both conduct and translate my research. Specifically, Julie Jacobs’ and Marlon Jimenez Oviendo’s guidance was instrumental in the grant processes. I would also like to acknowledge Jim Proctor and the Environmental Studies 2016 senior class for their intellectual support and constant inspiration. Jhana Taylor Valentine was the most wonderful academic companion and friend throughout this year, to whom I owe my sanity. Special thanks to Alistair Bleifuss for wading through a very rough draft and coming through with excellent advice. For their unwavering love and support, I would finally like to extend my constant gratitude to my comrades and housemates, Bear, Izzy, Analise, and Alex, and to my magnificent parents. 2 ABSTRACT This thesis centers on hydropower development and questions its continuing expansion as subsequent ecological and social challenges compound. -
Carbon Emissions MANAGEMENT PLAN
Carbon Emissions MANAGEMENT PLAN Prepared for SWACO February 2020 prepared by Contents Section 1.0 Introduction .........................................................1 A Changing Climate . .. 1 SWACO’s Commitment . 2 Using this Plan . 2 Section 2.0 Carbon Footprint Evaluation .......................................3 Footprint Definition . 3 Methodology . 3 Monitoring . 4 Section 3.0 Benchmarking ..............................................5 Section 4.0 Goal Setting ..............................................6 Methodology . 6 Organization-wide Goal . 6 Section 5.0 Implementing .........................................7 Landfill Gas Emissions Management . 7 Vehicle and Equipment Fuel Management . 8 Building Energy Management . 8 Waste Management . 8 Section 6.0 Future Considerations ............................9 Appendices Appendix A: Benchmarking Assessment . 11 Appendix B: Carbon Management Strategic Initiatives Matrix . 15 Appendix C: Strategic Initiative Decision Trees . 17 Photo Caption LIST OF ACRONYMS CH4 GWP SBTI Methane Global Warming Science-Based Potential Target Initiative CO2 IPCC SWACO Carbon Dioxide Intergovernmental Solid Waste Authority Panel on Climate of Central Ohio Control CO2e N2O Carbon Dioxide Nitrous Oxide Equivalent Introduction SECTION 1.0 Introduction A CHANGING CLIMATE In the atmosphere, carbon dioxide (CO2), methane above 1.5°C (2.7°F) will result in increasingly significant (CH4), nitrous oxide (N2O), and certain fluorinated impacts of climate change. To limit the increase to gases, collectively referred -
Reduce, Reuse and Reimagine
2019 URBAN ENERGY REPORT REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY iii URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY PETER WEINEM JOHNNY IVERSEN MARCIN BALCEREK 1 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY SMART ENERGY RE-USE IS GAINING IMPORTANCE IN URBAN DEVELOPMENT, PARTICULARLY IN ADDRESSING GLOBAL CLIMATE CHANGE CHALLENGES AND FUTURE LIMITED FOSSIL FUEL RESOURCES. 2 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY CONTENTS 1 INTRODUCTION 4 2 WHAT IS “RE-USE OF ENERGY” IN URBAN DEVELOPMENT? 6 3 WHICH KINDS OF ENERGY DO WE FINALLY CONSUME? 10 4 EFFICIENT UTILISATION OF FUEL 14 5 WASTE AS A MEASURE OF ENERGY RE-USE 22 6 SMART ENERGY SYSTEMS 30 7 CONCLUSIONS AND RECOMMENDATIONS 36 8 ABOUT THE AUTHORS 44 9 REFERENCES 46 FOR FOOTNOTES, SEE REFERENCES, PAGE 47. 3 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY 1. Designing and planning the communities and cities of the future will INTRODUCTION involve not only saving energy, but also developing smart energy-efficient solutions focused on the re-use of energy. Great amounts of energy are currently wasted in our cities. We need to identify creative new ways to reuse this energy. Energy that can be harvested and reused will be an essential part of the future energy system. -
A Citizen's Guide to BOEM's Renewable Energy Authorization Process
A Citizen’s Guide TO THE BUREAU OF OCEAN ENERGY MANAGEMENT’S RENEWABLE ENERGY AUTHORIZATION PROCESS December 2016 Overview This guide is intended to help the public understand the Bureau of Ocean Energy Management’s (BOEM) process for overseeing renewable energy projects on the Outer Continental Shelf (OCS) and to highlight opportunities for public involvement. About BOEM BOEM is the Bureau within the U.S. Department of the Interior responsible for managing development of the nation’s offshore energy resources in an environmentally and economically responsible way. BOEM promotes energy independence, environmental protection, and economic development through responsible, science-informed management of offshore energy resources. Introduction The United States is experiencing increased interest in the development of marine energy projects using wind, wave, and ocean current technologies. These types of renewable energy sources can provide densely populated coastal communities with a clean source of electrical power while helping to diversify the U.S. electrical supply. For additional information on offshore renewable energy technology, see BOEM’s “Offshore Renewable Energy Guide” at http://www.boem.gov/Offshore- Renewable-Energy-Guide/. In 2016, the U.S. Department of Energy (DOE) estimated 10,800 gigawatts (GW) of offshore wind energy could be accessed within the 200 nautical miles (nm) Exclusive Economic Zone (EEZ) boundary. DOE estimates offshore wind energy capacity recoverable given current technical capabilities to be 2,058 GW, with an energy generation potential almost double the electricity consumption of the United States. 2 | A Citizen’s Guide to the Bureau of Ocean Energy Management’s Renewable Energy Authorization Process BOEM’s Regulatory Authority for Renewable Energy Activities BOEM is the federal agency responsible for issuing leases, easements, and rights-of-way for renewable energy projects on the OCS. -
Energy Hierarchy and Building Design
Energy Hierarchy and Building Design Andrew Cruse, AIA LEED AP Assistant Professor of Architecture Ohio State University 2 O O R R Image: Transsolar Building Sustainability Renewable Codes Standards Technologies 3 4 Waste Hierarchy 5 CONVER T CONTRO L CONSERV E Waste Hierarchy Energy Hierarchy 6 CONVERT Get energy from renewable sources CONVERT CONTROL Make sure energy that is being used is used efficiently through a review of Mechanical and Electrical Equipment CONTROL CONSERV PErevent unnecessary energy use through Passive Climate Control Strategies and Behavioral Strategies CONSERV E Energy Hierarchy 7 CONVER T CONTROL CONSERVE Passive Building and Behavioral Strategies • largest impact with the least expense • pre-schematic design choices about building siting and orientation, passive solar and ventilation CONSERV options, landscape choices. • schematic design choices about the building enve- lope, both opaque and transparent walls. E • building occupant education and awareness Energy Hierarchy 8 Passive Climate Control System typically does not rely on purchased energy and uses basic elements of the building such as windows, walls, floors, etc. Active Climate Control Systems typically relies on purchased energy and dedicated equipment within the building (ducts, motors, wires, etc.) CONSERVE 9 Typical Project Potential for Phases Impact CONSERVE 10 Urba Suburba Rura n n l Context matters CONSERVE 11 The Environmental Value of Building Reuse - National Trust for Historic Preservation New Construction versus Rehabilitation CONSERVE -
Water Power for a Clean Energy Future
WATERWIND & POWER WATER PROGRAM POWER PROGRAM WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to strengthening the American economy. Targeted investments in clean en- ergy research and development jumpstart private sector innovation critical to our long-term economic growth, energy security, and international competitiveness. The U.S. Department of Energy (DOE) Water Power Program (the Pro- gram) is strengthening the nation’s global position by funding cutting-edge research to produce the next generation of hydropower and marine and hydrokinetic (MHK) technologies, and by accelerating the development of markets for those technologies. Currently, the hydropower industry employs 200,000–300,000 workers in the United States, making it not only the longest-running, but also the largest renewable electricity production workforce in the nation. However, there has been a lack of consistent hydropower educational programs in the United States. In an effort to increase our nation’s knowledge and skills in this area, the Program has sponsored new graduate research opportunities to train the next generation of hydropower specialists and engineers. The newly emerging MHK industry holds tremendous potential for job growth as MHK technologies progress to- wards commercial readiness. The Program invests in fellowships that fund graduate-level training and sends U.S. researchers to advanced European research facilities to establish partnerships, boost innovation, and facilitate knowledge sharing. By capitalizing on water power’s significant potential for sustainable growth, the United States can add thousands of clean energy jobs while building a sustainable, renewable energy future. -
Deloitte Resources 2017 Study Energy Management: Sustainability and Progress Contents
Deloitte Resources 2017 Study Energy management: Sustainability and progress Contents About the study 3 Executive summary 5 Residential consumer views on energy management 7 Detailed residential consumer findings 8 Business views on energy management 25 Detailed business findings 26 Concluding thoughts 46 Endnotes 49 Contacts 50 2 About the study Deloitte1, with strategy and market research firm Harrison The 2017 Study was conducted in March 2017, and thus, Group, a YouGov company, has completed its seventh largely reflects attitudes and practices related to the annual nationwide Resources Study (the “2017 Study” or year 2016. The Study captures two views: a residential “Study”) to provide insights that can be useful in helping consumer perspective and a business perspective. The energy companies and businesses make energy-related residential consumer portion is based on more than 1,500 investment and business decisions. The Study aims to demographically balanced online interviews with household answer questions such as: decision-makers for utility services. The business portion of the Study is based on more than 700 online interviews • What are US residential consumers and businesses with business decision-makers responsible for energy doing to manage their energy usage? management practices at companies with more than • Which energy issues matter most to them? 250 employees across all industries. To facilitate in-depth • What motivates them to reduce their energy analysis, business survey respondents are segmented consumption and what would impel them to take by industry sector and company size. Please see Figure 1 additional action? and Figure 2 for definitions of these segments. In addition, Deloitte interviewed several subject matter specialists and/ • Are they receptive to clean technologies? or providers of energy management products and services • How can electricity suppliers and energy service in order to obtain greater context and potential clarity providers better meet their needs? around key business findings. -
The Energy Hierarchy Approach to Optimum Use of Energy Infrastructure - Sharing Ideas from the Uk and Other Parts of Europe
Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan THE ENERGY HIERARCHY APPROACH TO OPTIMUM USE OF ENERGY INFRASTRUCTURE - SHARING IDEAS FROM THE UK AND OTHER PARTS OF EUROPE - Ian M. ARBON1 1 EurIng Prof Ian M. Arbon MSc, MBA, CEng, CEnv FIMechE, FASME, FEI, FInstR, FIES Sustainable Energy Consultant, Engineered Solutions, Girvan, Scotland, UK, Immediate Past Chairman, Energy, Environment & Sustainability Group, Institution of Mechanical Engineers [email protected] ABSTRACT: This paper focuses on how the Energy Hierarchy could be used to guide new energy infrastructure policies in Japan, in the context of the 2011 earthquake, examining parallels with Europe, particularly the UK. The Hierarchy approach considers pragmatic pathways towards a sustainable energy future for Japan with reference to all forms of energy, not just electricity. Although engineering solutions are crucial, the Hierarchy recognises that a primary influence on energy consumption is human behaviour. INTRODUCTION The stated aim of The Institution of Mechanical Engineers (IMechE) is “Improving the world through engineering”. There are 100,000 IMechE members, and a large number of those have signed up to the Energy, Environment and Sustainability Group (EESG). IMechE, specifically EESG, was instrumental in formulating the “Energy Hierarchy”, a sustainability framework for advocating the prioritisation of energy-saving as the most important step in a whole-system energy strategy (followed by energy efficiency and renewable energy) to provide a logical framework for the development of technically coherent sustainable energy policies. This was launched internationally at ICOMES in 2007 and has gained acceptance across many of the world’s engineering societies. -
Energy Management and Optimization
Energy Management and Optimization Keith Masters Business Manager, Pulp and Paper Systems, ABB Westerville, OH Abstract Energy Management and Optimization solutions can help reduce energy costs while improving mill operational performance. Real time data from process monitoring systems, automation systems and production planning systems is used for planning and scheduling to help optimize energy use, procurement and generation. This mill information coupled with the price and energy availability information from energy providers/market is used to calculate optimal production and power generation plan, and to get the best price for the energy you require. Reporting tools provide energy consumption, costs and efficiency monitoring. Introduction There are many different ways to implement Energy Management and Optimization. This paper will describe a computer software program that includes planning and scheduling tools to help optimize energy use and supply, energy balance management tools to help energy procurement at the best price, and reporting tools to help monitor energy consumption, costs, efficiency and other energy-related information. The program is based on real time data from process monitoring systems, automation systems, production planning systems coupled with the price and energy availability information from energy providers/market. The continued rise in energy prices puts a squeeze on margin and profits. Margin ? Energy Cost Figure 1 Energy costs impact on margin In order to maintain margin, energy cost must be managed. -
Renewable Energy and Sustainable Construction Study
Centre for Sustainable Energy Teignbridge District Council Renewable Energy and Sustainable Construction Study Final Report, 7 December 2010 (Amended version) Document revision 1.1 3 St Peter’s Court www.cse.org.uk We are a national charity that shares Bedminster Parade 0117 934 1400 our knowledge and experience to Bristol [email protected] help people change the way they BS3 4AQ reg charity 298740 think and act on energy. Teignbridge Renewable Energy and Sustainable Construction Study Table of Contents EXECUTIVE SUMMARY .................................................................................................................................... 5 1) INTRODUCTION .............................................................................................................................. 5 2) SUSTAINABLE ENERGY RESOURCES IN TEIGNBRIDGE ...................................................................... 5 3) POTENTIAL FOR DISTRICT HEATING ................................................................................................. 6 4) ENERGY OPPORTUNITIES PLANS .................................................................................................... 7 5) COST OF ZERO CARBON DEVELOPMENT .......................................................................................... 8 6) POLICY IMPLEMENTATION .............................................................................................................. 9 7) CONCLUSIONS AND RECOMMENDATIONS ....................................................................................... -
Community Energy Management Best Practices
COMMUNITY ENERGY MANAGEMENT - BEST PRACTICES Community Energy Management Best Practices Index Program Overview Best Practice One: Community Plans and Public Outreach 1.1 Energy Plan 1.2 Public Participation Best Practice Two: Zoning Regulations 2.1 Zoning Regulations Best Practice Three: Project Review Process 3.1 Project Review Policy and Procedures 3.2 Guide to Energy Efficiency and Renewable Energy Projects Best Practice Four: Recruitment and Education 4.1 Recruitment and Orientation 4.2 Education and Training Best Practice Five: Clean Energy Communities 5.1 Clean Energy Sites 5.2 Community Energy Management Best Practice Six: Community Prosperity 6.1 Economic Development Strategy 6.2 Marketing and Promotion Glossary Acknowledgements COMMUNITY ENERGY MANAGEMENT - BEST PRACTICES Program Overview Local governments across Michigan struggle with economic constraints and seek tools to secure their financial health and identify sources of stable on-going funding for their critical services. Energy costs for the operation of municipal buildings and infrastructure are a rising expense for communities. Fortunately, energy costs also represent one of the easiest places where cost savings can be realized. However, local governments frequently lack the technical expertise and staff capacity to pursue those savings. Even when staff members are interested in pursuing energy savings, determining where the necessary information is and how to prioritize improvements is an ongoing challenge. This is where the services of a Community Energy Manager (CEM) -
Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia
sustainability Article Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia Mohammad AlHashmi 1 , Gyan Chhipi-Shrestha 1,* , Rajeev Ruparathna 2, Kh Md Nahiduzzaman 1 , Kasun Hewage 1 and Rehan Sadiq 1 1 School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V1V7, Canada; [email protected] (M.A.); [email protected] (K.M.N.); [email protected] (K.H.); [email protected] (R.S.) 2 Department of Civil and Environmental Engineering, University of Windsor, 2285 Wyandotte St. W., Windsor, ON N9B 3P4, Canada; [email protected] * Correspondence: [email protected] Abstract: The residential sector consumes about 50% of the electricity produced from fossil fuels in Saudi Arabia. The residential energy demand is increasing. Moreover, a simple building energy performance assessment framework is not available for hot arid developing countries. This research proposes an energy performance assessment framework for residential buildings in hot and arid regions, which focuses on three performance criteria: operational energy, GHG emissions, and cost. The proposed framework has been applied to three types of residential buildings, i.e., detached, attached, and low-rise apartments, in five geographical regions of Saudi Arabia. Design Builder® was used to simulate the energy demand in buildings over a whole year. Four types of efficiency improvement interventions, including double-glazed windowpanes, triple-glazed windowpanes, LED lighting, and split air conditioners, were introduced in 12 combinations. Overall, 180 simulations Citation: AlHashmi, M.; were performed which are based on 12 intervention combinations, three building types, and five Chhipi-Shrestha, G.; Ruparathna, R.; Nahiduzzaman, K.M.; Hewage, K.; regions.