Thesis Title Goes Here

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Title Goes Here Plant–Pollinator Interactions in a Changing Climate by Jessica Rachel Keenan Forrest A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Jessica Rachel Keenan Forrest 2011 ii Plant–Pollinator Interactions in a Changing Climate Jessica Rachel Keenan Forrest Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2011 Abstract Climate change is shifting the seasonal timing of many biological events, and the possibility of non-parallel shifts in different taxa has raised concerns about phenological decoupling of interacting species. My thesis investigates interactions between climate, phenology, and pollination, using the plants and pollinators of Rocky Mountain meadows as a study system. Interannual variation in timing of snowmelt since the 1970s has been associated with changes in the assemblages of concurrently flowering species in these meadows, suggesting that plant species differ in their phenological responses to climate. Differences between plants and pollinators in responsiveness to changing climate could, in principle, cause early-flowering plants to flower too early in warm years, before pollinators are active. In fact, I found only transient evidence for pollinator deficits in one early-flowering species (Mertensia fusiformis), even in an early-snowmelt year. However, the assemblage of pollinators visiting M. fusiformis does change predictably over the season, with likely consequences for selection on floral morphology in years when pollen is limiting. Hence, early- and late-flowering populations may evolve in response to phenology of the pollinator community. Differences between plant and pollinator phenologies appear to be due to generally lower temperature thresholds for development in plants, combined with microclimate differences between the soil and the above- ground nests of some pollinators. Phenological decoupling between plants and pollinators seems iii possible but unlikely to be catastrophic, since many taxa possess adaptations to temporally variable environments. Nevertheless, for many species, adaptation to novel climates will entail evolutionary change, and species interactions can influence evolutionary trajectories. For species affected by increasing late-summer drought, earlier flowering may be advantageous. However, in laboratory experiments, bumble bees avoid rare, unfamiliar flower types, causing simulated plant populations to fail to adapt to changing conditions. Overall, my work emphasizes the importance of the interplay between species interactions and environmental change. iv Acknowledgments Many people contributed their time, wisdom, expertise, or equipment to the work described here. Without their support, this research would have been impossible. The trap-nest project in particular (Chapter 5) required the help of many people and businesses who donated space, materials, or services for trap-nest construction. I am grateful to many residents of the Crested Butte area for their interest in and help with this project; many trap-nests spent more than three full years in the field, and not one was vandalized (except by cows). My late uncle, John Keenan—master carpenter and lover of nature—let me use his beautiful workshop and helped build the 2008–2009 trap-nests. The Rocky Mountain Biological Laboratory in Gothic, Colorado, was my home and workplace for five summers. Ian Billick (Director), Jennie Reithel (Science Director), and Jessica Boynton (GPS/GIS Technician) provided logistical support and access to a spectacular working environment. Business Manager and kindred spirit billy barr provided entertainment, chocolate, workshop space, and invaluable weather records dating back to 1975. The analysis of co-flowering patterns could not have been conducted without David Inouye’s incomparable long-term dataset from RMBL. David has been the ideal collaborator: encouraging, generous with his data and his many scientific gadgets, and quick to respond to e- mail. The lovely and brilliant Kate Ostevik has my everlasting admiration: her cheerful disposition in the face of biting flies and June snowstorms made her a better field companion than I could ever have hoped for. A list of her virtues would make up a chapter of its own, so I will limit myself to acknowledging the many small improvements she made to my efficiency in the field, and her talent for plant identification, which led her to point out the inconvenient existence of a second Mertensia species in our study area. Several other people played an important role in the development of this thesis. Most of all, I wish to thank my advisor, James Thomson—for knowing the right tool for any occasion; for introducing me to RMBL; for improving my writing; for letting me have the freedom and resources to develop this thesis the way I wanted, for better or worse; and, especially, for understanding what kind of support I needed most. I am tremendously grateful for his faith in v me. Rob Gegear introduced me to the lab in Toronto and the art of bumble bee-wrangling; conversations (well, arguments) with Rob helped shape many of my research ideas. Jane Ogilvie collected bees for me and was a great friend, ally, and collaborator, in Toronto and Colorado. Josie Hughes and Heather Coiner provided sympathy and advice on various aspects of data management and analysis. I am particularly indebted to Josie for teaching me how to efficiently deal with large and messy datasets, and to Heather for teaching me the basics of temperature measurement. I have also benefited from scientific and social interactions with Emily Austen, James Burns, Jessamyn Manson, Nathan Muchhala, Mike Otterstatter, Ali Parker, Jen Perry, Helen Rodd, Barbara Thomson, and Terry Wheeler. Suggestions from my external examiner, Alison Brody, helped improve the thesis. Spencer Barrett, Art Weis, the members of my advisory committee (Peter Abrams, Don Jackson, and John Stinchcombe), and numerous others in the EEB department have made me feel at home in academia and have helped make me a better scientist. Finally, I am grateful to my parents, Margo Keenan and Kenneth Forrest, without whose love I surely would never have made it this far. vi Table of Contents Acknowledgments ........................................................................................................................... v Table of Contents .......................................................................................................................... vii List of Tables ............................................................................................................................... xiii List of Plates ................................................................................................................................ xiv List of Figures ............................................................................................................................... xv List of Appendices ...................................................................................................................... xvii Chapter 1: Context ......................................................................................................................... 1 Species interactions in a changing climate ................................................................................. 2 Climate change in the Rocky Mountains ................................................................................... 4 Pollinators of Rocky Mountain wildflowers .............................................................................. 6 Thesis outline ............................................................................................................................. 7 Chapter 2: Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? ......................................................................................... 11 Abstract ......................................................................................................................................... 11 Introduction ................................................................................................................................... 12 Methods ......................................................................................................................................... 14 Study area ................................................................................................................................. 14 Focal species ............................................................................................................................ 16 Data analysis ............................................................................................................................ 18 Whole community overlap ................................................................................................ 18 Overlap between species pairs .......................................................................................... 21 Results ........................................................................................................................................... 22 Temporal autocorrelation ......................................................................................................... 22 Whole community overlap ......................................................................................................
Recommended publications
  • Nitrogen Containing Volatile Organic Compounds
    DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants.
    [Show full text]
  • The Complexity of Male Reproductive Success: Effects of Nutrition, Morphology, and Experience Downloaded From
    Behavioral The official journal of the ISBE Ecology International Society for Behavioral Ecology Behavioral Ecology (2015), 26(2), 617–624. doi:10.1093/beheco/aru240 Original Article The complexity of male reproductive success: effects of nutrition, morphology, and experience Downloaded from Claudia Fricke, Margo I. Adler, Robert C. Brooks, and Russell Bonduriansky Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Biological Science Building (D26), University of New South Wales, Kensington, Sydney, NSW 2052, Australia http://beheco.oxfordjournals.org/ Received 1 July 2014; revised 12 December 2014; accepted 18 December 2014; Advance Access publication 3 February 2015. Many studies have attempted to account for variation in male reproductive success by quantifying a single trait such as an ornament or a behavior, but male reproductive performance may be determined by a number of interacting traits. Although developmental nutri- tion is often a major determinant of adult body size and secondary sexual trait expression, other factors—such as residual shape variation and prior experience—may also exert independent effects on male reproductive success. Here, we studied how male sexual- trait expression, as manipulated by larval diet quality, and experience in direct male–male competition, affected male reproductive success in the sexually dimorphic neriid flyTelostylinus angusticollis. Among competing males matched by body size, individuals with at University of New South Wales on March 29, 2015 relatively longer antennae (used as weapons) were more likely to win and also achieved matings faster. Unexpectedly, males reared on a poor larval diet and those that had previously lost in male–male combat appeared to invest more in some aspects of reproduc- tion as indicated by a longer mating duration and a higher subsequent egg-hatching rate.
    [Show full text]
  • Phylogenetic Reconstruction of the Evolution of Stylar Polymorphisms in Narcissus (Amaryllidaceae)1
    American Journal of Botany 91(7): 1007±1021. 2004. INVITED SPECIAL PAPER PHYLOGENETIC RECONSTRUCTION OF THE EVOLUTION OF STYLAR POLYMORPHISMS IN NARCISSUS (AMARYLLIDACEAE)1 SEAN W. G RAHAM2,4 AND SPENCER C. H. BARRETT3 2UBC Botanical Garden and Centre for Plant Research, 6804 SW Marine Drive, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; and 3Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 We investigated the origin of stylar polymorphisms in Narcissus, which possesses a remarkable range of stylar conditions and diverse types of ¯oral morphology and pollination biology. Reconstruction of evolutionary change was complicated by incomplete resolution of trees inferred from two rapidly evolving chloroplast regions, but we bracketed reconstructions expected on the fully resolved plastid- based tree by considering all possible resolutions of polytomies on the shortest trees. Stigma-height dimorphism likely arose on several occasions in Narcissus and persisted across multiple speciation events. As proposed in published models, this rare type of stylar polymorphism is ancestral to distyly. While there is no evidence in Narcissus that dimorphism preceded tristyly, a rapid transition between them may explain the lack of a phylogenetic footprint for this evolutionary sequence. The single instances of distyly and tristyly in Narcissus albimarginatus and N. triandrus, respectively, are clearly not homologous, an evolutionary convergence unique to Amaryllidaceae. Floral morphology was likely an important trigger for the evolution of stylar polymorphisms: Concentrated-changes tests indicate that a long, narrow ¯oral tube may have been associated with the emergence of stigma-height dimorphism and that this type of tube, in combination with a deep corona, likely promoted, or at least was associated with, the parallel origins of heterostyly.
    [Show full text]
  • Lathyrus Bijugatus
    Fire Effects Information System (FEIS) FEIS Home Page Lathyrus bijugatus Table of Contents SUMMARY INTRODUCTION DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE ECOLOGY AND MANAGEMENT OTHER MANAGEMENT CONSIDERATIONS APPENDIX REFERENCES Figure 1—Drypark pea in flower. Photo by Tara Luna, used with permission. SUMMARY This Species Review summarizes the scientific information that was available on drypark pea as of February 2021. Drypark pea is a rare, leguminous forb that occurs in eastern Washington and Oregon, northern Idaho, and northwestern Montana. Within that distribution, it grows in a broad range of biogeoclimatic zones and elevations. As its common name "drypark pea" suggests, it prefers dry soils and open sites. Drypark pea grows in sagebrush-conifer and sagebrush-grassland transition zones; in ponderosa pine, Douglas-fir, and subalpine fir-Engelmann spruce woodlands and forests; and subalpine fir parklands. In conifer communities, it is most common in open stands. Drypark pea has rhizomes that grow out from its taproot. Its roots host nitrogen-fixing Rhizobium bacteria. Drypark pea regenerates from seed and has a soil-stored seed bank; however, information on seed dispersal, viability, and seedling establishment of drypark pea was not available in the literature. Fire probably top-kills drypark pea, and it likely sprouts from its rhizomes and/or caudex after top-kill; however, these responses are undocumented. Only one study provided information on the response of drypark pea to fire. In ponderosa pine forest in northern Idaho, cover and frequency of drypark pea were similar on unburned plots and plots burned under low or high intensity, when 1 averaged across 3 postfire years.
    [Show full text]
  • The Conservation Management and Ecology of Northeastern North
    THE CONSERVATION MANAGEMENT AND ECOLOGY OF NORTHEASTERN NORTH AMERICAN BUMBLE BEES AMANDA LICZNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO September 2020 © Amanda Liczner, 2020 ii Abstract Bumble bees (Bombus spp.; Apidae) are among the pollinators most in decline globally with a main cause being habitat loss. Habitat requirements for bumble bees are poorly understood presenting a research gap. The purpose of my dissertation is to characterize the habitat of bumble bees at different spatial scales using: a systematic literature review of bumble bee nesting and overwintering habitat globally (Chapter 1); surveys of local and landcover variables for two at-risk bumble bee species (Bombus terricola, and B. pensylvanicus) in southern Ontario (Chapter 2); identification of conservation priority areas for bumble bee species in Canada (Chapter 3); and an analysis of the methodology for locating bumble bee nests using detection dogs (Chapter 4). The main findings were current literature on bumble bee nesting and overwintering habitat is limited and biased towards the United Kingdom and agricultural habitats (Ch.1). Bumble bees overwinter underground, often on shaded banks or near trees. Nests were mostly underground and found in many landscapes (Ch.1). B. terricola and B. pensylvanicus have distinct habitat characteristics (Ch.2). Landscape predictors explained more variation in the species data than local or floral resources (Ch.2). Among local variables, floral resources were consistently important throughout the season (Ch.2). Most bumble bee conservation priority areas are in western Canada, southern Ontario, southern Quebec and across the Maritimes and are most often located within woody savannas (Ch.3).
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • The Western Bumble Bee Was Once Commonly Found N R in the Western United States and Canada
    Thanks to Dr. Robbin Thorp, UC Davis. UC Thorp, Robbin Dr. to Thanks Guide developed and illustrated by Elaine Evans, The Xerces Society. Xerces The Evans, Elaine by illustrated and developed Guide Bombus appositus Bombus Bombus morrisoni Bombus Funding for bumble bee conservation provided by the CS Fund. CS the by provided conservation bee bumble for Funding Bombus melanopygus Bombus Bombus bifarius Bombus Visit www.xerces.org/bumblebees for more information. more for www.xerces.org/bumblebees Visit Bombus occidentalis Bombus , please contact [email protected] contact please , find you If FOR INVERTEBRATE CONSERVATION INVERTEBRATE FOR S X T OCIETY ERCES HE B. occidentalis B. populations. remaining will use this information to promote conservation of of conservation promote to information this use will www.xerces.org/bumblebees Society and scientists studying bumble bee decline decline bee bumble studying scientists and Society will help document their current range. The Xerces Xerces The range. current their document help will P h o in recent years. Your efforts to search for this bee bee this for search to efforts Your years. recent in t o b y D e Found in the mountains and northern areas northern and mountains the in Found r Columbia to central California have nearly disappeared disappeared nearly have California central to Columbia r Bombus huntii Bombus mixtus Bombus i c k D historic range, but populations from southern British British southern from populations but range, historic i t c h still be found in northern and eastern parts of their their of parts eastern and northern in found be still b u United States and Canada.
    [Show full text]
  • Patterns and Potential Mechanisms of Thermal Preference in E. Muscae-Infected Drosophila Melanogaster
    Western Washington University Western CEDAR WWU Honors Program Senior Projects WWU Graduate and Undergraduate Scholarship Spring 2020 Patterns and potential mechanisms of thermal preference in E. muscae-infected Drosophila melanogaster Aundrea Koger Western Washington University Carolyn Elya Ph.D. Harvard University Jamilla Akhund-Zade Ph.D. Harvard University Benjamin de Bivort Ph.D. Harvard University Follow this and additional works at: https://cedar.wwu.edu/wwu_honors Recommended Citation Koger, Aundrea; Elya, Carolyn Ph.D.; Akhund-Zade, Jamilla Ph.D.; and de Bivort, Benjamin Ph.D., "Patterns and potential mechanisms of thermal preference in E. muscae-infected Drosophila melanogaster" (2020). WWU Honors Program Senior Projects. 406. https://cedar.wwu.edu/wwu_honors/406 This Project is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Honors Program Senior Projects by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Patterns and potential mechanisms of thermal preference in Entomophthora ​ muscae-infected Drosophila melanogaster ​ ​ 1 2 2 Aundrea Koger ,​ Carolyn Elya, Ph.D. ,​ Jamilla Akhund-Zade, Ph.D. ,​ and Benjamin de Bivort, ​ ​ ​ Ph.D.2 ​ 1 2 Honors​ Program, Western Washington University, Department​ of Organismic and ​ Evolutionary Biology, Harvard University Abstract Animals use various strategies to defend against pathogens. Behavioral fever, or fighting infection by moving to warm locations, is seen in many ectotherms. The behavior-manipulating fungal pathogen Entomophthora muscae infects numerous dipterans, including fruit flies and ​ ​ ​ ​ house flies, Musca domestica. House flies have been shown to exhibit robust behavioral fever ​ ​ early after exposure to E.
    [Show full text]
  • Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
    sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes.
    [Show full text]
  • Mountain Plants of Northeastern Utah
    MOUNTAIN PLANTS OF NORTHEASTERN UTAH Original booklet and drawings by Berniece A. Andersen and Arthur H. Holmgren Revised May 1996 HG 506 FOREWORD In the original printing, the purpose of this manual was to serve as a guide for students, amateur botanists and anyone interested in the wildflowers of a rather limited geographic area. The intent was to depict and describe over 400 common, conspicuous or beautiful species. In this revision we have tried to maintain the intent and integrity of the original. Scientific names have been updated in accordance with changes in taxonomic thought since the time of the first printing. Some changes have been incorporated in order to make the manual more user-friendly for the beginner. The species are now organized primarily by floral color. We hope that these changes serve to enhance the enjoyment and usefulness of this long-popular manual. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor Utah State University Extension is an affirmative action/equal employment opportunity employer and educational organization. We offer our programs to persons regardless of race, color, national origin, sex, religion, age or disability. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert L. Gilliland, Vice-President and Director, Cooperative Extension
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]
  • Bumble Bee Surveys in the Columbia River Gorge National Scenic Area of Oregon and Washington
    Bumble Bee Surveys in the Columbia River Gorge National Scenic Area of Oregon and Washington Final report from the Xerces Society to the U.S. Forest Service and Interagency Special Status/Sensitive Species Program (ISSSSP) Agreement L13AC00102, Modification 5 Bombus vosnesenskii on Balsamorhiza sagittata. Photo by Rich Hatfield, the Xerces Society. By Rich Hatfield, Sarina Jepsen, and Scott Black, the Xerces Society for Invertebrate Conservation September 2017 1 Table of Contents Abstract ......................................................................................................................................................... 3 Introduction .................................................................................................................................................. 3 Methods ........................................................................................................................................................ 6 Site Selection ............................................................................................................................................. 6 Site Descriptions (west to east) ................................................................................................................ 7 T14ES27 (USFS) ..................................................................................................................................... 7 Cape Horn (USFS) .................................................................................................................................
    [Show full text]