Recent Ecological Change in Ancient Lakes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A. -
Lake Baikal Russian Federation
LAKE BAIKAL RUSSIAN FEDERATION Lake Baikal is in south central Siberia close to the Mongolian border. It is the largest, oldest by 20 million years, and deepest, at 1,638m, of the world's lakes. It is 3.15 million hectares in size and contains a fifth of the world's unfrozen surface freshwater. Its age and isolation and unusually fertile depths have given it the world's richest and most unusual lacustrine fauna which, like the Galapagos islands’, is of outstanding value to evolutionary science. The exceptional variety of endemic animals and plants make the lake one of the most biologically diverse on earth. Threats to the site: Present threats are the untreated wastes from the river Selenga, potential oil and gas exploration in the Selenga delta, widespread lake-edge pollution and over-hunting of the Baikal seals. However, the threat of an oil pipeline along the lake’s north shore was averted in 2006 by Presidential decree and the pulp and cellulose mill on the southern shore which polluted 200 sq. km of the lake, caused some of the worst air pollution in Russia and genetic mutations in some of the lake’s endemic species, was closed in 2009 as no longer profitable to run. COUNTRY Russian Federation NAME Lake Baikal NATURAL WORLD HERITAGE SERIAL SITE 1996: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following statement at the time of inscription. Justification for Inscription The Committee inscribed Lake Baikal the most outstanding example of a freshwater ecosystem on the basis of: Criteria (vii), (viii), (ix) and (x). -
Baseline Assessment of the Lake Ohrid Region - Albania
TOWARDS STRENGTHENED GOVERNANCE OF THE SHARED TRANSBOUNDARY NATURAL AND CULTURAL HERITAGE OF THE LAKE OHRID REGION Baseline Assessment of the Lake Ohrid region - Albania IUCN – ICOMOS joint draft report January 2016 Contents ........................................................................................................................................................................... i A. Executive Summary ................................................................................................................................... 1 B. The study area ........................................................................................................................................... 5 B.1 The physical environment ............................................................................................................. 5 B.2 The biotic environment ................................................................................................................. 7 B.3 Cultural Settings ............................................................................................................................ 0 C. Heritage values and resources/ attributes ................................................................................................ 6 C.1 Natural heritage values and resources ......................................................................................... 6 C.2 Cultural heritage values and resources....................................................................................... 12 D. -
Flow Regime Change in an Endorheic Basin in Southern Ethiopia
Hydrol. Earth Syst. Sci., 18, 3837–3853, 2014 www.hydrol-earth-syst-sci.net/18/3837/2014/ doi:10.5194/hess-18-3837-2014 © Author(s) 2014. CC Attribution 3.0 License. Flow regime change in an endorheic basin in southern Ethiopia F. F. Worku1,4,5, M. Werner1,2, N. Wright1,3,5, P. van der Zaag1,5, and S. S. Demissie6 1UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands 2Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands 3University of Leeds, School of Civil Engineering, Leeds, UK 4Arba Minch University, Institute of Technology, P.O. Box 21, Arba Minch, Ethiopia 5Department of Water Resources, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands 6Ethiopian Institute of Water Resources, Addis Ababa University, P.O. Box 150461, Addis Ababa, Ethiopia Correspondence to: F. F. Worku ([email protected]) Received: 29 December 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 29 January 2014 Revised: – – Accepted: 20 August 2014 – Published: 30 September 2014 Abstract. Endorheic basins, often found in semi-arid and 1 Introduction arid climates, are particularly sensitive to variation in fluxes such as precipitation, evaporation and runoff, resulting in Understanding the hydrology of a river and its historical flow variability of river flows as well as of water levels in end- characteristics is essential for water resources planning, de- point lakes that are often present. In this paper we apply veloping ecosystem services, and carrying out environmen- the indicators of hydrological alteration (IHA) to characterise tal flow assessments. -
Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007)
Originally published as: Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007): Climate variability during the past 2,000 years and past economic and irrigation activities in the Aral Sea basin. - Irrigation and Drainage Systems, 21, 3-4, 167-183 DOI: 10.1007/s10795-007-9031-5. Irrigation and Drainage Systems, 21, 3-4, 167-183, 10.1007/s10795-007-9031-5 1 Climate variability during the past 2000 years and past economic and irrigation 2 activities in the Aral Sea basin 3 4 Hedi Oberhänsli1, Nikolaus Boroffka2, Philippe Sorrel3, Sergey Krivonogov,4 5 6 1) GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany. 7 2) Deutsches Archäologisches Institut, Im Dol 2-6, D-14195 Berlin, Germany. 8 3) Laboratoire "Morphodynamique Continentale et Côtière" (UMR 6143 CNRS), 9 Université de Caen Basse-Normandie, 24 rue des Tilleuls, F-14000 CAEN, France. 10 4) United Institute of Geoloy, Geophysics and Mineralogy of the Russian Academy of 11 Sciences, Siberian Division, Novosibirsk regional Center of Geoinformational 12 Technologies, Academic Koptyug prospekt 3, 630090 Novosibirsk, Russia. 13 14 Abstract 15 The lake level history, here based on the relative abundance of Ca (gypsum), is used for 16 tracing past hydrological conditions in Central Asia. Lake level was close to a minimum 17 before approximately AD 300, at about AD 600, AD 1220 and AD 1400. Since 1960 the 18 lake level is lowering again. Lake water level was lowest during the 14th or early 15th 19 centuries as indicated by a coeval settlement, which today is still under water near the 20 well-dated mausoleum of Kerderi. -
Hydrographic Development of the Aral Sea During the Last 2000 Years Based on a Quantitative Analysis of Dinoflagellate Cysts
Palaeogeography, Palaeoclimatology, Palaeoecology 234 (2006) 304–327 www.elsevier.com/locate/palaeo Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts P. Sorrel a,b,*, S.-M. Popescu b, M.J. Head c,1, J.P. Suc b, S. Klotz b,d, H. Oberha¨nsli a a GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany b Laboratoire Pale´oEnvironnements et Pale´obioSphe`re (UMR CNRS 5125), Universite´ Claude Bernard—Lyon 1, 27-43, boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France c Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK d Institut fu¨r Geowissenschaften, Universita¨t Tu¨bingen, Sigwartstrasse 10, 72070 Tu¨bingen, Germany Received 30 June 2005; received in revised form 4 October 2005; accepted 13 October 2005 Abstract The Aral Sea Basin is a critical area for studying the influence of climate and anthropogenic impact on the development of hydrographic conditions in an endorheic basin. We present organic-walled dinoflagellate cyst analyses with a sampling resolution of 15 to 20 years from a core retrieved at Chernyshov Bay in the NW Large Aral Sea (Kazakhstan). Cysts are present throughout, but species richness is low (seven taxa). The dominant morphotypes are Lingulodinium machaerophorum with varied process length and Impagidinium caspienense, a species recently described from the Caspian Sea. Subordinate species are Caspidinium rugosum, Romanodinium areolatum, Spiniferites cruciformis, cysts of Pentapharsodinium dalei, and round brownish protoper- idiniacean cysts. The chlorococcalean algae Botryococcus and Pediastrum are taken to represent freshwater inflow into the Aral Sea. The data are used to reconstruct salinity as expressed in lake level changes during the past 2000 years. -
Decision of the Government of the Russian Federation No. 908 of December 31, 2004 on the Approval of the Lists of the Codes of T
DECISION OF THE GOVERNMENT OF THE RUSSIAN FEDERATION NO. 908 OF DECEMBER 31, 2004 ON THE APPROVAL OF THE LISTS OF THE CODES OF THE TYPES OF FOODSTUFFS AND GOODS FOR CHILDREN IMPOSABLE WITH VALUE-ADDED TAX AT THE 10 PER CENT TAX RATE (with the Amendments and Addenda of March 23, October 12, 2005, February 27, November 27, December 30, 2006, July 9, 23, 2007) In accordance with Subitems 1 and 2 of Item 2 of Article 164 of the Tax Code of the Russian Federation, the Government of the Russian Federation resolves as follows: 1. To approve the annexed: List of the Codes of the Types of Foodstuffs in Accordance with the All-Russia Classifier of Products Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Realisation; List of the Codes of the Types of Foodstuffs in Accordance with the Commodity Classification of Foreign Economic Activity of the Russian Federation Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Importation into the Customs Territory of the Russian Federation; List of the Codes of the Types of Goods for Children in Accordance with the All-Russia Classifier of Products Imposable with Value-Added Tax at the 10 per Cent Tax Rate in Their Realisation; List of the Codes of the Types of Goods for Children in Accordance with the Commodity Classification of Foreign Economic Activity of the Russian Federation Imposable with Value-Added Tax at the 10 per Cent Tax in Their Importation into the Customs Territory of the Russian Federation. -
International Geography Exam Part 2
2018 International Geography Bee 7. Which of these Washington cities is driest due to rain International Geography Exam - Part 2 shadow? A. Seattle B. Tacoma Instructions – This portion of the IGB Exam consists of C. Bellingham 100 questions. You will receive two points for a correct D. Spokane answer. You will lose one point for an incorrect answer. Blank responses lose no points. Please fill in the bubbles 8. The Karakum Desert in Central Asia is bordered by completely on the answer sheet. You may write on the what two mountain ranges? examination, but all responses must be bubbled on the A. Ural and Atlas answer sheet. Diacritic marks such as accents have been B. Caucasus and Hindu Kush omitted from place names and other proper nouns. You C. Hindu Kush and Yin have one hour to complete this set of multiple choice D. Caucasus and Ural questions. 9. All of these contain parts of the Kalahari Desert 1. Which of these best defines the term intergovernmental EXCEPT which of the following? organization? A. South Africa A. a multinational corporation B. Kenya B. a treaty with multiple nations as signatories C. Namibia C. an organization composed of sovereign states D. Botswana established by a charter or treaty D. an international aid agency 10. All of these border the Red Sea’s western shore EXCEPT which of the following? 2. Which of the following is an example of an A. Saudi Arabia intergovernmental organization? B. Egypt A. the United Nations C. Djibouti B. the International Red Cross D. Sudan C. the Quartet D. -
Транспортная Стратегия ЦАРЭС 2030 (CAREC Transport Strategy
Транспортная стратегия ЦАРЭС 2030 Новая Транспортная стратегия ЦАРЭС 2030 основывается на достигнутом прогрессе и уроках, извлеченных из Стратегии ЦАРЭС по транспорту и содействию торговле до 2020 года. Ее ключевые связи с общей программой ЦАРЭС 2030 находятся в областях улучшения связанности и устойчивости. Данная стратегия заключается в упрощении, нашедшем свое отражение, прежде всего, в отделении содействия торговле от транспорта. Она в равной степени уделяет внимание повышению устойчивости и качества сетей, наряду с непрерывным строительством и капитальным ремонтом транспортных коридоров. Нынешняя Транспортная стратегия будет реализовываться в сочетании с недавней Интегрированной программой по торговле ЦАРЭС до 2030 года. О Программе Центральноазиатского регионального экономического сотрудничества Программа Центральноазиатского регионального экономического сотрудничества (ЦАРЭС) – это партнерство 11 стран-членов, а также партнеров по развитию, работающих совместно для продвижения развития посредством сотрудничества, приводящего к ускоренному экономическому росту и сокращению бедности. Оно руководствуется общим видением “Хорошие соседи, хорошие партнеры и хорошие перспективы”. В число стран ЦАРЭС входят: Афганистан, Азербайджан, Китайская Народная Республика, Грузия, Казахстан, Кыргызская Республика, Монголия, Пакистан, Таджикистан, Туркменистан и Узбекистан. АБР выполняет функции Секретариата ЦАРЭС Об Азиатском банке развития АБР стремится к достижению процветания, всеохватности, стабильности и устойчивости в Азии и Тихоокеанском регионе, -
Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species
Differences in brain transcriptomes of closely related baikal coregonid species Bychenko, O. S., Sukhanova, L. V., Azhikina, T. L., Skvortsov, T. A., Belomestnykh, T. V., & Sverdlov, E. D. (2014). Differences in brain transcriptomes of closely related baikal coregonid species. BioMed Research International, 2014, [857329]. DOI: 10.1155/2014/857329 Published in: BioMed Research International Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Nov. 2017 Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 857329, 11 pages http://dx.doi.org/10.1155/2014/857329 Research Article Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species Oksana S. -
The Last Glacial-Interglacial Cycle in Lake Ohrid (Macedonia/Albania): Testing Diatom Response to Climate
Biogeosciences, 7, 3083–3094, 2010 www.biogeosciences.net/7/3083/2010/ Biogeosciences doi:10.5194/bg-7-3083-2010 © Author(s) 2010. CC Attribution 3.0 License. The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate J. M. Reed1, A. Cvetkoska2, Z. Levkov2, H. Vogel3, and B. Wagner3 1Department of Geography, University of Hull, Cottingham Rd., Hull HU6 7RX, UK 2Institute of Biology, Faculty of Natural Sciences, Gazi Baba bb, 1000 Skopje, Republic of Macedonia 3University of Cologne, Institute of Geology and Mineralogy, 50674 Cologne, Germany Received: 14 May 2010 – Published in Biogeosciences Discuss.: 17 June 2010 Revised: 15 September 2010 – Accepted: 21 September 2010 – Published: 13 October 2010 Abstract. Lake Ohrid is a site of global importance for variation or evolutionary selection pressure. The applica- palaeoclimate research. This study presents results of diatom tion of a simple dissolution index does not track preserva- analysis of a ca. 136 ka sequence, Co1202, from the northeast tion quality very effectively, underlining the importance of of the lake basin. It offers the opportunity to test diatom re- diatom accumulation data in future studies. sponse across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrat- 1 Introduction ing the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial- Ancient Lake Ohrid is a site of global importance for long- interglacial shifts between the dominant planktonic taxa, Cy- term palaeoclimate reconstruction, with its long sediment clotella fottii and C. -
What Drives the Water Level Decline of Lake Urmia Stephan Schulz 1*, Sahand Darehshouri1, Elmira Hassanzadeh2, Massoud Tajrishy3 & Christoph Schüth1
www.nature.com/scientificreports OPEN Climate change or irrigated agriculture – what drives the water level decline of Lake Urmia Stephan Schulz 1*, Sahand Darehshouri1, Elmira Hassanzadeh2, Massoud Tajrishy3 & Christoph Schüth1 Lake Urmia is one of the largest hypersaline lakes on earth with a unique biodiversity. Over the past two decades the lake water level declined dramatically, threatening the functionality of the lake’s ecosystems. There is a controversial debate about the reasons for this decline, with either mismanagement of the water resources, or climatic changes assumed to be the main cause. In this study we quantifed the water budget components of Lake Urmia and analyzed their temporal evolution and interplay over the last fve decades. With this we can show that variations of Lake Urmia’s water level during the analyzed period were mainly triggered by climatic changes. However, under the current climatic conditions agricultural water extraction volumes are signifcant compared to the remaining surface water infow volumes. Changes in agricultural water withdrawal would have a signifcant impact on the lake volume and could either stabilize the lake, or lead to its complete collapse. Lake Urmia is an endorheic lake located in north-west of Iran (Fig. 1). With an average original surface area of about 5,000 km2 it is one of the largest hypersaline lakes on earth1–3. Considering its original extent, Lake Urmia has more than one hundred islands, which are vital for the reproduction of various local birds, but also as a safe breeding refuge of migratory birds such as Flamingos and White Pelicans2. Te main islands are an ideal habitat for endangered species such as the Iranian yellow deer and Armenian moufon4.