Geomagnetic Response from Meteorite Impacts

Total Page:16

File Type:pdf, Size:1020Kb

Geomagnetic Response from Meteorite Impacts Ludwig-Maximilians-Universität München Geomagnetic response from meteorite impacts Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Michael Eitel München, den 18.12.2018 1. Gutachter: Prof. Dr. Stuart Gilder 2. Gutachter: Prof. Dr. Kai Wünnemann Tag der mündlichen Prüfung: 06.05.2019 CONTENTS Contents List of figures................................................................................................................1 List of tables..................................................................................................................3 Summary.......................................................................................................................4 1 Introduction...............................................................................................................6 1.1 Crater Formation.............................................................................................10 1.2 Magnetic field recording in impact structures.................................................12 1.3 Original contributions from this thesis............................................................14 2 Rochechouart impact crater melt breccias record no geomagnetic field reversal...17 2.1 Abstract............................................................................................................17 2.2 Introduction.....................................................................................................18 2.3 Geological setting and sampling.....................................................................21 2.4 Experimental results........................................................................................23 2.4.1 Stepwise demagnetization........................................................................23 2.4.2 Curie point experiments...........................................................................26 2.4.3 Optical microscopy, Raman spectroscopy and electron microprobe analyses....................................................................................................28 2.4.4 Paleointensity...........................................................................................30 2.4.5 Anisotropy of TRM..................................................................................33 2.5 Interpretation and conclusions.........................................................................35 2.6 Acknowledgments...........................................................................................39 3 A paleomagnetic and rock magnetic study of the Manicouagan impact structure: Implications for crater formation and geodynamo effects.....................................40 3.1 Abstract............................................................................................................40 3.2 Introduction.....................................................................................................41 3.3 Geological setting and sampling.....................................................................43 3.4 Experimental results........................................................................................45 3.4.1 Curie temperature....................................................................................45 3.4.2 Reflective light microscopy and electron microprobe analyses..............47 CONTENTS 3.4.3 Bulk susceptibility, magnetic hysteresis, and low-temperature characteristics..........................................................................................48 3.4.4 Stepwise demagnetization and paleomagnetic directions........................54 3.4.5 Paleointensity...........................................................................................59 3.4.6 Anisotropy of magnetic remanence.........................................................60 3.5 Interpretations..................................................................................................62 3.5.1 Crater formation processes......................................................................62 3.5.2 The central magnetic anomaly.................................................................63 3.5.3 Effect of impact on the geodynamo.........................................................64 3.6 Conclusions.....................................................................................................67 3.7 Acknowledgments...........................................................................................68 4 Magnetic signatures of terrestrial meteorite impact craters: A summary...............69 4.1 Abstract............................................................................................................69 4.2 Brief description of an impact event with relevance to magnetism................70 4.3 Link between crater structure and local aeromagnetic signatures...................72 4.4 Magnetic mineralogy.......................................................................................78 4.4.1 Melt rocks................................................................................................78 4.4.2 Target rocks..............................................................................................81 4.4.3 Shock remanent magnetization................................................................83 4.5 Paleomagnetism...............................................................................................87 4.5.1 Crater Formation Processes.....................................................................87 4.5.2 Do Meteorite Impacts Influence the Geodynamo?..................................89 4.6 Conclusions.....................................................................................................93 4.7 Acknowledgments...........................................................................................94 5 AF demagnetization and ARM acquisition at elevated temperatures in natural titanomagnetite bearing rocks................................................................................95 5.1 Abstract...........................................................................................................95 5.2 Introduction.....................................................................................................96 5.3 Sample description..........................................................................................97 5.4 Results.............................................................................................................98 5.4.1 Rock-magnetic properties........................................................................98 5.4.2 AF-demagnetization...............................................................................100 CONTENTS 5.4.3 TRM, ARM and tARM acquisition.......................................................102 5.5 Discussion.....................................................................................................103 5.5.1 Coercivity spectra..................................................................................103 5.5.2 Additivity...............................................................................................105 5.5.3 Thermal Fluctuations.............................................................................106 5.6 Conclusion.....................................................................................................108 5.7 Acknowledgments.........................................................................................108 6 Conclusions and outlook.......................................................................................110 Appendix...................................................................................................................114 References.................................................................................................................117 Acknowledgments.....................................................................................................150 LIST OF FIGURES List of figures 1.1 Model of impact induced shock waves traveling through Earth.......................9 1.2 Stages of the formation of a meteorite impact crater.......................................11 1.3 Cooling time of impact melt as a function of distance from the surface.........13 1.4 Magnetically shielded AF/ARM coil...............................................................16 2.1 Locality and geologic map of the Rochechouart crater region........................21 2.2 Orthogonal demagnetization diagrams from Rochechouart............................24 2.3 Thermomagnetic curves and Curie temperatures from Rochechouart............26 2.4 Microscope images and Raman spectra from Rochechouart...........................28 2.5 Electron microprobe concentration maps from Rochechouart........................29 2.6 Arai plots and orthogonal demagnetization diagrams.....................................31 2.7 Paleointensity results from the Rochechouart impact crater...........................32 2.8 Rochechouart pole and virtual dipole moment................................................37 3.1 Geologic and magnetic anomaly map of the Manicouagan impact crater......42 3.2 Thermomagnetic curves of samples from Manicouagan.................................45 3.3 Microscopy images and microprobe maps from Manicouagan.......................47 3.4 Rock magnetism of the Manicouagan drill cores............................................49 3.5 Orthogonal
Recommended publications
  • Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
    Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v.
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • The Sudbury Basin, the Southern Province, the Grenville Front, and the Penokean Orogeny
    The Sudbury Basin, the Southern Province, the Grenville Front, and the Penokean Orogeny STEPHAN J. BROCOUM* IAN W. D. DALZIEL** Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT The Sudbury Basin in the Canadian Shield has been proposed as a meteorite impact site subsequently deformed by en- dogenic tectonism. Detailed study of the structural geology strengthens this hypothesis and strongly suggests that the deformation of the basin was coeval with major folding and flattening (2.0 to 1.6 b.y. ago) of the rocks of the eastern Southern province and the northwesternmost Gren- ville province. The structural geometry indicates that most of these rocks have a similar strain history. Finite-strain analysis of deformed concretions within the Sudbury Basin sug- gests that originally it was almost circular in outline. Key words: structural geology, deformation, finite-strain indicators, folds, impact features, meteor crater, orogeny, Precambrian, structural analysis, tectonic Figure 1. Geological setting of the Sudbury Basin. fabric. sublayer (Souch and Podolsky, 1969), 1972) or suevite breccia (Peredery, 1972) INTRODUCTION which apparently also intrudes the country has increased the number of workers who The Sudbury Basin, Ontario, is situated rock as radial and concentric dikes called believe that the Sudbury Basin was formed just north of Lake Huron near the intersec- offsets (Fig. 2; Naldrett and others, 1971). at least in part by the impact of a hyper- tion of the Superior, Southern, and Gren- The sublayer and offsets of the irruptive velocity bolide. ville provinces of the Canadian Shield (Fig. are, at present, the world's largest single Geologists who argue against the meteor- 1).
    [Show full text]
  • Production and Saturation of Porosity in the Lunar Highlands from Impact Cratering
    The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Soderblom, Jason M., et al. “The Fractured Moon: Production and Saturation of Porosity in the Lunar Highlands from Impact Cratering.” Geophysical Research Letters, vol. 42, no. 17, Sept. 2015, pp. 6939–44. © 2015 American Geophysical Union As Published http://dx.doi.org/10.1002/2015GL065022 Publisher American Geophysical Union (AGU) Version Final published version Citable link http://hdl.handle.net/1721.1/118615 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The fractured Moon: Production and saturation 10.1002/2015GL065022 of porosity in the lunar highlands Key Points: from impact cratering • The relation between impact-generated porosity and crater size is quantified Jason M. Soderblom1, Alexander J. Evans2, Brandon C. Johnson1, H. Jay Melosh3, Katarina Miljković1,4, • Impacts into highly porous targets 5 6 7 8 3 result in positive gravity anomalies Roger J. Phillips , Jeffrey C. Andrews-Hanna , Carver J. Bierson , James W. Head III , Colleen Milbury , 9 7 1 2,10 11 • The cratering record of the oldest Gregory A. Neumann , Francis Nimmo , David E. Smith , Sean C. Solomon , Michael M. Sori , lunar surfaces is preserved in the
    [Show full text]
  • Hydrothermal Alteration at the Lonar Lake Impact Structure, India: Implications for Impact Cratering on Mars
    Meteoritics & Planetary Science 38, Nr 3, 365–381 (2003) Abstract available online at http://meteoritics.org Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars Justin J. HAGERTY* and Horton E. NEWSOM Institute of Meteoritics, Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA *Corresponding author. E-mail: [email protected] (Received 12 June 2002; revision accepted 20 February 2003) Abstract–The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post-impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X-ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact-induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface.
    [Show full text]
  • Neoglacial Climate Anomalies and the Harappan Metamorphosis 2 3 Authors: 4 5 Liviu Giosan1*, William D
    Clim. Past Discuss., https://doi.org/10.5194/cp-2018-37 Manuscript under review for journal Clim. Past Discussion started: 4 April 2018 c Author(s) 2018. CC BY 4.0 License. 1 Neoglacial Climate Anomalies and the Harappan Metamorphosis 2 3 Authors: 4 5 Liviu Giosan1*, William D. Orsi2,3, Marco Coolen4, Cornelia Wuchter4, 6 Ann G. Dunlea1, Kaustubh Thirumalai5, Samuel E. Munoz1, Peter D. Clift6, 7 Jeffrey P. Donnelly1, Valier Galy7, Dorian Q. Fuller8 8 9 10 Affiliations: 11 12 1Geology & Geophysics, Woods Hole Oceanographic Institution, MA, USA 13 2Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig- 14 Maximilians-Universität München, 80333 Munich, Germany 15 3GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 16 4Curtin University, Perth, Australia 17 5Brown University, Providence, RI, USA 18 6Geology & Geophysics, Louisiana State University, USA 19 8Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, MA, USA 20 7Institute of Archaeology, University College London, London, UK 21 22 *Correspondence: [email protected] 23 24 25 26 1 Clim. Past Discuss., https://doi.org/10.5194/cp-2018-37 Manuscript under review for journal Clim. Past Discussion started: 4 April 2018 c Author(s) 2018. CC BY 4.0 License. 27 Abstract: 28 29 Climate exerted constraints on the growth and decline of past human societies but our knowledge 30 of temporal and spatial climatic patterns is often too restricted to address causal connections. At 31 a global scale, the inter-hemispheric thermal balance provides an emergent framework for 32 understanding regional Holocene climate variability. As the thermal balance adjusted to gradual 33 changes in the seasonality of insolation, the Inter-Tropical Convergence Zone migrated 34 southward accompanied by a weakening of the Indian summer monsoon.
    [Show full text]
  • WHAT IS the VREDEFORT DOME TEACHING US ABOUT the SEARCH for OTHER ERODED LARGE IMPACT STRUCTURES? Roger L
    Bridging the Gap III (2015) 1045.pdf WHAT IS THE VREDEFORT DOME TEACHING US ABOUT THE SEARCH FOR OTHER ERODED LARGE IMPACT STRUCTURES? Roger L. Gibson, School of Geosciences, University of the Witwatersrand, PO WITS, Johannesburg 2050, South Africa; [email protected]. Introduction: Vredefort has long been held to be extent of these breccias cannot be used as an indicator the oldest, largest and most deeply exhumed impact of the original limits of the impact structure. structure on Earth; however, in recent years its pre- With at least half the vertical extent of continental eminence in all three aspects has been challenged. crust typically being crystalline, a major problem may Evaluating the scientific debate around the claims of arise with trying to identify central uplifts on lithologi- the challengers [1,2,3] to these titles invokes a sense of cal or geophysical grounds; and traces of the wider déjà vu when one considers the decades-long history of crater dimensions are even less likely to be defined. debate about whether Vredefort itself originated by Age: The 2020 ± 5 Ma age of the Vredefort impact impact. This presentation briefly reviews the debate is based on U-Pb single-zircon geochronology of a around the impact-related features in the Vredefort variety of melt types. Dating of igneous zircons from Dome, with the main focus being the extent and inten- the impact-melt rock has been complemented by others sity of impact-induced thermal effects that play a sig- from voluminous pseudotachylitic breccias from the nificant role in masking potential diagnostic features.
    [Show full text]
  • Deglacial and Postglacial Evolution of the Pingualuit Crater Lake Basin, Northern Québec (Canada)
    Geomorphology 248 (2015) 327–343 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Deglacial and postglacial evolution of the Pingualuit Crater Lake basin, northern Québec (Canada) Pierre-Arnaud Desiage a,b,⁎, Patrick Lajeunesse b,c, Guillaume St-Onge a,b, Alexandre Normandeau b, Grégoire Ledoux c,HervéGuyarda,b,d, Reinhard Pienitz c a Institut des sciences de la mer de Rimouski (ISMER), Canada Research Chair in Marine Geology, Université du Québec à Rimouski, Rimouski, Canada b GEOTOP Research Center, Canada c Centre d'études Nordiques (CEN) & Département de Géographie, Université Laval, Québec, Canada d Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR CNRS 7154, Paris, France article info abstract Article history: The Pingualuit Crater, located in the Ungava Peninsula (northern Québec, Canada) is a 1.4-Ma-old impact crater Received 15 January 2015 hosting a ~245-m-deep lake. The lake has a great potential to preserve unique paleoclimatic and paleoecological Received in revised form 9 July 2015 sedimentary records of the last glacial/interglacial cycles in the terrestrial Canadian Arctic. In order to investigate Accepted 10 July 2015 the stratigraphy in the lake and the late Quaternary glacial history of the Pingualuit Crater, this study compiles Available online 29 July 2015 data from three expeditions carried out in May 2007 (~9-m-long sediment core), in August 2010 (~50 km of seismic lines), and in September 2012 (high-resolution terrestrial LiDAR topography of the inner slopes). Despite Keywords: fi lake levels the weak penetration (~10 m) of the 3.5-kHz subbottom pro ling caused by the presence of boulders in the Mass movements sedimentary column, seismic data coupled with the stratigraphy established from the sediment core enabled Laurentide Ice Sheet the identification of two glaciolacustrine units deposited during the final stages of the Laurentide Ice Sheet Sedimentological processes (LIS) retreat in the crater.
    [Show full text]
  • Sedimentological Analysis of Resurge Deposits at the Lockne and Tvären Craters: Clues to Flow Dynamics
    Meteoritics & Planetary Science 42, Nr 11, 1929–1943 (2007) Abstract available online at http://meteoritics.org Sedimentological analysis of resurge deposits at the Lockne and Tvären craters: Clues to flow dynamics Jens ORMÖ1*, Erik STURKELL2, and Maurits LINDSTRÖM3 1Centro de Astrobiología (CAB), Instituto Nacional de Técnica Aeroespacial, Ctra de Torrejón a Ajalvir, km 4, 28850 Torrejón de Ardoz, Madrid, Spain 2Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland 3Department of Geology and Geochemistry, Stockholm University, 10691 Stockholm, Sweden *Corresponding author. E-mail: [email protected] (Submitted 08 November 2006; revision accepted 14 May 2007) Abstract–The Lockne and Tvären craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvären (apparent basement crater diameter D = 2 km) was probably not over 150 m, and for Lockne (D = 7.5 km) recent best-fit numerical simulations suggest the target water depth of 500–700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvären is eroded with only the crater infill preserved. We have line-logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into “resurge proper,” with water and debris shooting into the crater and ultimately rising into a central water plume, “anti-resurge,” with flow outward from the collapsing plume, and “oscillating resurge” (not covered by the line-logging due to methodological reasons), with decreasing flow in diverse directions.
    [Show full text]
  • Multiple Fluvial Reworking of Impact Ejecta—A Case Study from the Ries Crater, Southern Germany
    Multiple fluvial reworking of impact ejecta--A case study from the Ries crater, southern Germany Item Type Article; text Authors Buchner, E.; Schmieder, M. Citation Buchner, E., & Schmieder, M. (2009). Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany. Meteoritics & Planetary Science, 44(7), 1051-1060. DOI 10.1111/j.1945-5100.2009.tb00787.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 20:56:07 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656594 Meteoritics & Planetary Science 44, Nr 7, 1051–1060 (2009) Abstract available online at http://meteoritics.org Multiple fluvial reworking of impact ejecta—A case study from the Ries crater, southern Germany Elmar BUCHNER* and Martin SCHMIEDER Institut für Planetologie, Universität Stuttgart, 70174 Stuttgart, Germany *Corresponding author. E-mail: [email protected] (Received 21 July 2008; revision accepted 12 May 2009) Abstract–Impact ejecta eroded and transported by gravity flows, tsunamis, or glaciers have been reported from a number of impact structures on Earth. Impact ejecta reworked by fluvial processes, however, are sparsely mentioned in the literature. This suggests that shocked mineral grains and impact glasses are unstable when eroded and transported in a fluvial system. As a case study, we here present a report of impact ejecta affected by multiple fluvial reworking including rounded quartz grains with planar deformation features and diaplectic quartz and feldspar glass in pebbles of fluvial sandstones from the “Monheimer Höhensande” ~10 km east of the Ries crater in southern Germany.
    [Show full text]
  • Impact Crater Collapse
    P1: SKH/tah P2: KKK/mbg QC: KKK/arun T1: KKK March 12, 1999 17:54 Annual Reviews AR081-12 Annu. Rev. Earth Planet. Sci. 1999. 27:385–415 Copyright c 1999 by Annual Reviews. All rights reserved IMPACT CRATER COLLAPSE H. J. Melosh Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721; e-mail: [email protected] B. A. Ivanov Institute for Dynamics of the Geospheres, Russian Academy of Sciences, Moscow, Russia 117979 KEY WORDS: crater morphology, dynamical weakening, acoustic fluidization, transient crater, central peaks ABSTRACT The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped “transient crater.” The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called “simple” and have a depth- to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called “complex” craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for tem- porary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]