The Card19 Locus of Murine Chromosome 13 Regulates Terminal Cell Lysis Downstream of Caspase Activation and Gasdermin-D Cleavage

Total Page:16

File Type:pdf, Size:1020Kb

The Card19 Locus of Murine Chromosome 13 Regulates Terminal Cell Lysis Downstream of Caspase Activation and Gasdermin-D Cleavage bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436207; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Card19 locus of murine chromosome 13 regulates terminal cell lysis downstream of caspase activation and Gasdermin-D cleavage Card19 locus regulates caspase-dependent cell lysis Elisabet Bjanes1,2,#, Reyna Garcia Sillas2, Rina Matsuda1,2, Benjamin Demarco3, Timothée Fettrelet3, Alexandra A. DeLaney1,2, Eric M. Rodriguez Lopez2,4, Daniel Grubaugh2, Meghan A. Wynosky-Dolfi2,&, Naomi H. Philip2,4,§, Elise Krespan2,5, Dorothy Tovar2,¶, Leonel Joannas2,6, Daniel P. Beiting2,5,7, Jorge Henao-Mejia2,6,7, Brian C. Schaefer8, Kaiwen W. Chen3,%, Petr Broz3, Igor E. Brodsky2,7* 1Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America 2Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America 3Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland 4Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America 5Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America 6CRISPR/Cas9 Mouse Targeting Core, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America 7Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America 8Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America #Current address: Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America &Current address: Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America §Current address: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America ¶Current address: Department of Microbiology & Immunology, Stanford University School of Medicine, Palo Alto California, United States of America %Current address: Immunology Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore *Correspondence to: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436207; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Author Contributions Conceptualization: E.B., and I.E.B. Formal Analysis: R.M. Investigation: E.B., R.G.S., R.M., B.D., T.F. A.D, E.M.R.L, D.G., M.A.W-D., N.H.P., and D.T. Supervision: L.J., J.H-M., K.W.C., P.B., and I.E.B. Resources: L.J., D.B., E.K., B.C.S., J.H-M., and P.B. Funding Acquisition: I.E.B. Writing: E.B., B.C.S., K.W.C., I.E.B. Abstract Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-/- mice whose macrophages were protected from cell death and showed reduced pore formation during apoptosis or pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as two independently-generated CRISPR/Cas9 Card19 knockout mice showed no defect in macrophage cell lysis. The original Card19-/- line was generated in a 129SvEvBrd background, and SNP analysis revealed a six megabase region of 129 origin co-segregating with the Card19 locus. Card19 is located on chromosome 13, adjacent to Ninj1, which was recently reported to regulate cell lysis downstream of GSDMD activation. Nonetheless, we could not detect major defects in NINJ1 protein expression or mutations in Ninj1 coding sequence in Card19-/- mice. Mice from the original Card19-/- line exhibited significantly increased susceptibility to Yersinia infection, demonstrating that cell lysis itself plays a key role in protection against bacterial infection. Our findings identify a locus on murine chromosome 13 that regulates the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage, and implicates additional NINJ1-independent factors that control terminal cell lysis. 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436207; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Author Summary Programmed cell death is critical for regulating tissue homeostasis and host defense against infection. Pyroptosis is an inflammatory form of programmed cell death that couples cell lysis with release of inflammatory cytokines. Cell lysis is triggered by activation of particular intracellular pore forming proteins, but how regulation of cell lysis occurs is not well understood. We identified the Card19 locus on chromosome 13 as playing a key role in regulating terminal cell death in response to danger signals, such as bacterial infections or harmful chemicals. We found that immune cells from Card19-/- mice were resistant to multiple forms of cell death in response to a variety of harmful stimuli, including bacterial infections. Card19-/- mice were more susceptible to Yersinia infection, indicating that cell lysis contributes to control of bacterial infections. Our data provide new insight into the impact of terminal cell lysis on control of bacterial infection and indicate that additional factors exist that regulate lytic cell death. 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436207; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Introduction Regulated cell death is an evolutionarily conserved mechanism by which multicellular organisms regulate fundamental biological processes ranging from tissue development to control of microbial infection. Apoptosis and pyroptosis represent two distinct forms of regulated cell death that are activated in response to diverse stimuli, including developmental signals (1, 2), tissue stress or injury (3), and microbial infection (4-7). While apoptosis is an immunologically quiescent or suppressive form of cell death during tissue homeostasis and development, certain stimuli, including infections and chemotherapeutic agents, induce apoptosis that is accompanied by inflammatory signals that contribute to anti-pathogen and anti-tumor immunity (8-10). Apoptosis is activated by specific initiator apoptotic caspases, following certain intrinsic or extrinsic signals, and mediates organized disassembly of the cell via a process that limits cellular permeability and enables phagocytosis of the dying cell (11, 12). Alternatively, pyroptosis is a lytic form of regulated cell death characterized by caspase-1- or -11-dependent plasma membrane disruption mediated by cleavage and activation of the pore forming protein Gasdermin D (GSDMD), and release of interleukin-1 (IL-1) family cytokines and other intracellular components (13-16). However, inhibition of the receptor-proximal signaling kinases TAK1 or IKK by chemotherapeutic drugs or during infection by bacterial pathogens such as Yersinia, can trigger a caspase-8-dependent apoptosis pathway that is also associated with GSDMD cleavage (17-19). Interestingly, a recent study demonstrated that only caspase-8 activated in the RIPK1-containing complex IIb can efficiently cleave GSDMD in macrophages (20). These findings suggest a potential point of intersection of cell death pathways previously viewed as distinct (21). During pyroptosis, secretion of IL-1 family cytokines and release of intracellular contents are temporally and genetically linked, and it has been suggested that IL-1 cytokines are released from cells when they undergo caspase-1 or -11-dependent lysis (22, 23). However, IL-1 secretion and cell lysis can be uncoupled in certain cell types or in response to specific stimuli. For example, the osmoprotectant glycine prevents release of lactate dehydrogenase (LDH), a key indicator of cell lysis, but does not affect IL-1β cytokine release (24, 25). Conversely, genetic ablation of IL-1 does not prevent cell lysis following pyroptotic stimuli. Moreover, IL-1 secretion can occur by living cells in the absence of apparent cytotoxicity (26, 27). Notably, neutrophils and monocytes display evidence of caspase-1 processing and IL-1 secretion in the absence of cell lysis (28, 29). Furthermore,
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death
    Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death Dan Wenga, Robyn Marty-Roixa, Sandhya Ganesana, Megan K. Proulxb, Gregory I. Vladimera, William J. Kaiserc, Edward S. Mocarskic, Kimberly Pouliota, Francis Ka-Ming Chand, Michelle A. Kellihere, Phillip A. Harrisf, John Bertinf, Peter J. Goughf, Dmitry M. Shayakhmetovg, Jon D. Goguenb, Katherine A. Fitzgeralda,h, Neal Silvermana, and Egil Liena,h,1 aProgram in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, bDepartment of Microbiology and Physiological Systems, dDepartment of Cancer Biology, and eDepartment of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; cDepartment of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322; fPattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426; gLowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University, Atlanta, GA 30322; and hCentre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved April 1, 2014 (received for review February 25, 2014) A number of pathogens cause host cell death upon infection, and Yersinia outer protein J (YopJ; YopP in Yersinia enterocolitica), al- Yersinia pestis, infamous for its role in large pandemics such as the though it is unclear whether this is entirely by apoptosis (11, 12). All “Black Death” in medieval Europe, induces considerable cytotoxic- human-pathogenic Yersiniae (Y. pestis, Yersinia pseudotuberculosis, ity. The rapid killing of macrophages induced by Y.
    [Show full text]
  • AIM2 and NLRC4 Inflammasomes Contribute with ASC to Acute Brain Injury Independently of NLRP3
    AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3 Adam Denesa,b,1, Graham Couttsb, Nikolett Lénárta, Sheena M. Cruickshankb, Pablo Pelegrinb,c, Joanne Skinnerb, Nancy Rothwellb, Stuart M. Allanb, and David Broughb,1 aLaboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, 1083, Hungary; bFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and cInflammation and Experimental Surgery Unit, CIBERehd (Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas), Murcia Biohealth Research Institute–Arrixaca, University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved February 19, 2015 (received for review November 18, 2014) Inflammation that contributes to acute cerebrovascular disease is or DAMPs, it recruits ASC, which in turn recruits caspase-1, driven by the proinflammatory cytokine interleukin-1 and is known causing its activation. Caspase-1 then processes pro–IL-1β to a to exacerbate resulting injury. The activity of interleukin-1 is regu- mature form that is rapidly secreted from the cell (5). The ac- lated by multimolecular protein complexes called inflammasomes. tivation of caspase-1 can also cause cell death (6). There are multiple potential inflammasomes activated in diverse A number of inflammasome-forming PRRs have been iden- diseases, yet the nature of the inflammasomes involved in brain tified, including NLR family, pyrin domain containing 1 (NLRP1); injury is currently unknown. Here, using a rodent model of stroke, NLRP3; NLRP6; NLRP7; NLRP12; NLR family, CARD domain we show that the NLRC4 (NLR family, CARD domain containing 4) containing 4 (NLRC4); AIM 2 (absent in melanoma 2); IFI16; and AIM2 (absent in melanoma 2) inflammasomes contribute to and RIG-I (5).
    [Show full text]
  • Supplementary Figures and Tables
    SUPPLEMENTARY DATA Supplementary Figure 1. Isolation and culture of endothelial cells from surgical specimens of FVM. (A) Representative pre-surgical fundus photograph of a right eye exhibiting a FVM encroaching on the optic nerve (dashed line) causing tractional retinal detachment with blot hemorrhages throughout retina (arrow heads). (B) Magnetic beads (arrows) allow for separation and culturing of enriched cell populations from surgical specimens (scale bar = 100 μm). (C) Cultures of isolated cells stained positively for CD31 representing a successfully isolated enriched population (scale bar = 40 μm). ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Figure 2. Efficient siRNA knockdown of RUNX1 expression and function demonstrated by qRT-PCR, Western Blot, and scratch assay. (A) RUNX1 siRNA induced a 60% reduction of RUNX1 expression measured by qRT-PCR 48 hrs post-transfection whereas expression of RUNX2 and RUNX3, the two other mammalian RUNX orthologues, showed no significant changes, indicating specificity of our siRNA. Functional inhibition of Runx1 signaling was demonstrated by a 330% increase in insulin-like growth factor binding protein-3 (IGFBP3) RNA expression level, a known target of RUNX1 inhibition. Western blot demonstrated similar reduction in protein levels. (B) siRNA- 2’s effect on RUNX1 was validated by qRT-PCR and western blot, demonstrating a similar reduction in both RNA and protein. Scratch assay demonstrates functional inhibition of RUNX1 by siRNA-2. ns: not significant, * p < 0.05, *** p < 0.001 ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Table 1.
    [Show full text]
  • Sulindac Sulfide-Induced Apoptosis Involves Death Receptor 5 and the Caspase 8-Dependent Pathway in Human Colon and Prostate Cancer Cells1
    [CANCER RESEARCH 61, 6918–6924, September 15, 2001] Sulindac Sulfide-induced Apoptosis Involves Death Receptor 5 and the Caspase 8-dependent Pathway in Human Colon and Prostate Cancer Cells1 Ying Huang, Qin He, Michael J. Hillman, Rong Rong, and M. Saeed Sheikh2 Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210 ABSTRACT which the NSAIDs mediate their chemopreventive and antitumori- genic effects remain less well understood but may be multifaceted in Sulindac is the most extensively investigated clinically relevant chemo- nature. Evidence suggests that the chemopreventive effects of preventive nonsteroidal anti-inflammatory drug. Sulindac sulfide is one of NSAIDs could be attributed to their apoptosis-inducing potential. For the major metabolites of sulindac that is believed to mediate its antitu- morigenic effects by inducing apoptosis. Recent evidence suggests that example, sulindac is the most extensively investigated clinically rel- sulindac sulfide engages the mitochondrial pathway involving caspase 9 evant chemopreventive NSAID that reduces the number and size of and Bax to mediate its apoptotic effects [Zhang et al., Science (Wash. DC), the colorectal tumors in genetically susceptible humans and animals 290: 989–992, 2000]. In this report, we demonstrate that sulindac sulfide (5–7). Sulindac sulfide and sulindac sulfone are the two major me- also engaged the membrane death receptor (DR) pathway to mediate tabolites of sulindac; sulindac sulfide is COX selective, whereas apoptosis. Sulindac sulfide up-regulated DR5 and activated the proximal sulindac sulfone is believed to lack COX-inhibitory activity (8). Both caspase 8 in various different colon and prostate cancer cell lines.
    [Show full text]
  • Genetic Variation, Big Data and Ageing
    INFRAFRONTIER / IMPC Conference 2019 Genetic Variation, Big Data and Ageing June 3 to 5, 2019 | Helsinki #InfrafrontierConf #InfraConfHelsinki WELCOME Dear colleagues, After two productive meetings in Athens (2017) and Munich (2018), the joint conference of the INFRAFRONTIER research infrastructure and the International Mouse Phenotyping Consortium (IMPC) has successfully established itself as the global platform for scientific exchange between experts from basic research to clinical research in the biomedical field – with a focus on functional phenogenomics. Martin Hrabě de Angelis This summer, we welcome you to Helsinki, the beautiful capital of INFRAFRONTIER, Finland. The aim of the INFRAFRONTIER/IMPC Conference 2019 is to Scientific Director discuss three hot topics in modern biomedical research: Genetic Variation: Understanding the functional consequences of human genetic variation and its impact on genetic diseases is critically important. This task involves systematic mutagenesis in appropriate models emulating human genetic variation, together with comprehensive genotypic and phenotypic analysis. Big Data: The availability of vast amounts of genomic and pheno­ typic data in the IMPC and INFRAFRONTIER databases offers the po­ tential to transform the biomedical research landscape. To carefully collect, analyse and interpret these huge datasets will be essential Steve Brown IMPC, Scientific Chair for the progress of genomic medicine. Ageing: In a setting of rapidly ageing societies across Europe, Ame­ rica, and Asia, new findings into the genetics of ageing processes and age­related disorders uncovered using animal models are pivo­ tal to not only extending life but also improving its quality. We are grateful to our colleagues at the University of Oulu, together with the Finnish Ministry of Education and Culture and the Acade­ my of Finland, for their kind support in organizing this conference.
    [Show full text]
  • Bincard Shrna Plasmid (M): Sc-141706-SH
    SANTA CRUZ BIOTECHNOLOGY, INC. BinCARD shRNA Plasmid (m): sc-141706-SH BACKGROUND PRODUCT BinCARD (Bcl10-interacting CARD protein) is a 228 amino acid protein that BinCARD shRNA Plasmid (m) is a target-specific lentiviral vector plasmid exists as two alternatively spiced isoforms. BinCARD localizes to nucleus encoding a 19-25 nt (plus hairpin) shRNA designed to knock down gene and is expressed in ovary, testis, placenta, skeletal muscle, kidney, lung, heart, expression. Each plasmid contains a puromycin resistance gene for the liver, thymus and brain. Containing a CARD domain, BinCARD plays a role in selection of cells stably expressing shRNA. Each vial contains 20 µg of inhibiting the effects of Bcl10-induced activation of NFκB possibly by inhibit- lyophilized shRNA plasmid DNA. Suitable for up to 20 transfections. Also ing the phosphorylation of Bcl10 in a CARD-dependent manner. The BinCARD see BinCARD siRNA (m): sc-141706 and BinCARD shRNA (m) Lentiviral gene maps to chromosome 9q22.31. Chromosome 9 consists of about 145 Particles: sc-141706-V as alternate gene silencing products. million bases and 4% of the human genome and encodes nearly 900 genes. Notably, chromosome 9 encompasses the largest interferon family gene clus- STORAGE AND RESUSPENSION ter. Considered to play a role in gender determination, deletion of the distal Store lyophilized shRNA plasmid DNA at 4° C with desiccant. Stable for portion of 9p can lead to development of male to female sex reversal, the at least one year from the date of shipment. Once resuspended, store at phenotype of a female with a male X,Y genotype.
    [Show full text]
  • Curiosity, Cell Death and Caspases: One Researcher’S Journey to Big Discoveries
    Health & Medicine ︱ Professor Vishva Dixit Curiosity, cell death and caspases: One researcher’s journey to big discoveries All comic book superheroes have isii, Kenya, the mid-1950s. Valley, and at the heart of the African tea an intriguing ‘origins story’; and The East African country is still industry. Nestled in the mountains 7000 in the case of science superman K a British colony, and there is feet above sea level, and surrounded Professor Vishva Dixit he has strong cultural and societal demarcation by the lush green of tea plantations, one too. Beginning in Kenya and of ethnicities, with separate schools, this must have seemed a world away Vishva and his wife, Manjul, on a recent visit ending in California, this is the hospital and civic centres depending from the bleak and arid landscape of to the Laikipia anti-poaching unit in Kenya. story of a researcher who asked on race. Vishva Dixit was born into this the frontier. Perhaps aptly, one theory big questions of himself and the discordant atmosphere a decade after for the etymology of the name of the world, and went on to pioneer a his physician parents were sent to Kenya town ‘Kericho’ is that it derives from the lecturer, Professor Hettiaratchi, left a that a career in public health was not for his medical degree recognised in the field of research into cell death, from India on colonial service. Initially, Kipsigis word for hospital, ‘kerichek’; so particular impression; revealing to the him. He felt that as a physician, he could United States, and following a good word caspases and apoptosis.
    [Show full text]
  • Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2020 Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo Sarah Talley Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Immunology and Infectious Disease Commons Recommended Citation Talley, Sarah, "Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo" (2020). Dissertations. 3827. https://ecommons.luc.edu/luc_diss/3827 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2020 Sarah Talley LOYOLA UNIVERSITY CHICAGO DEVELOPING CASPASE-1 BIOSENSORS TO MONITOR INFLAMMATION IN VITRO AND IN VIVO A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN INTEGRATIVE CELL BIOLOGY BY SARAH TALLEY CHICAGO, IL AUGUST 2020 TABLE OF CONTENTS LIST OF FIGURES v CHAPTER ONE: INTRODUCTION 1 CHAPTER TWO: REVIEW OF THE LITERATURE 5 Overview 5 Structure of Inflammasomes 6 Function of Inflammasomes 8 NLRP1 8 NLRP3 14 NLRC4 21 AIM2 24 PYRIN 28 Noncanonical Inflammasome Activation and Pyroptosis 31 Inflammatory Caspases 36 Caspase-1 36 Other Inflammatory Caspases 40 Biosensors and Novel Tools to Monitor
    [Show full text]
  • Gene Expression in the Mouse Eye: an Online Resource for Genetics Using 103 Strains of Mice
    Molecular Vision 2009; 15:1730-1763 <http://www.molvis.org/molvis/v15/a185> © 2009 Molecular Vision Received 3 September 2008 | Accepted 25 August 2009 | Published 31 August 2009 Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice Eldon E. Geisert,1 Lu Lu,2 Natalie E. Freeman-Anderson,1 Justin P. Templeton,1 Mohamed Nassr,1 Xusheng Wang,2 Weikuan Gu,3 Yan Jiao,3 Robert W. Williams2 (First two authors contributed equally to this work) 1Department of Ophthalmology and Center for Vision Research, Memphis, TN; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN; 3Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN Purpose: Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants, functional differences, and ocular pathophysiology. Methods: mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts. Results: We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression differences.
    [Show full text]
  • Bincard CRISPR/Cas9 KO Plasmid (M): Sc-427067
    SANTA CRUZ BIOTECHNOLOGY, INC. BinCARD CRISPR/Cas9 KO Plasmid (m): sc-427067 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and BinCARD CRISPR/Cas9 KO Plasmid (m) is recommended for the disruption of CRISPR-associated protein (Cas9) system is an adaptive immune response gene expression in mouse cells. defense mechanism used by archea and bacteria for the degradation of foreign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas hybrid) promoter: drives systems. Science 339: 819-823. 2A peptide: expression of Cas9 allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nuclear localization signal SpCas9 ribonuclease Nat. Protoc. 8: 2281-2308.
    [Show full text]