In-Memory Performance for Big Data

Total Page:16

File Type:pdf, Size:1020Kb

In-Memory Performance for Big Data In-Memory Performance for Big Data Goetz Graefe Haris Volos Hideaki Kimura HP Labs Palo Alto HP Labs Palo Alto HP Labs Palo Alto [email protected] [email protected] [email protected] Harumi Kuno Joseph Tucek HP Labs Palo Alto HP Labs Palo Alto [email protected] [email protected] ∗ Mark Lillibridge Alistair Veitch HP Labs Palo Alto Google [email protected] [email protected] ABSTRACT coherence issues. However, a buffer pool imposes a layer When a working set fits into memory, the overhead im- of indirection that incurs a significant performance cost. In posed by the buffer pool renders traditional databases non- particular, page identifiers are required to locate the page competitive with in-memory designs that sacrifice the ben- regardless of whether it is in memory or on disk. This in efits of a buffer pool. However, despite the large memory turn calls for a mapping between in-memory addresses of available with modern hardware, data skew, shifting work- pages and their identifiers. loads, and complex mixed workloads make it difficult to guarantee that a working set will fit in memory. Hence, some 10000000 recent work has focused on enabling in-memory databases to protect performance when the working data set almost 1000000 fits in memory. Contrary to those prior efforts, we en- OS Virtual Memory able buffer pool designs to match in-memory performance Traditional Buffer Pool while supporting the \big data" workloads that continue 100000 to require secondary storage, thus providing the best of both worlds. We introduce here a novel buffer pool de- sign that adapts pointer swizzling for references between 10000 system objects (as opposed to application objects), and uses Throughput(qps) it to practically eliminate buffer pool overheads for memory- resident data. Our implementation and experimental eval- 1000 uation demonstrate that we achieve graceful performance degradation when the working set grows to exceed the buffer pool size, and graceful improvement when the working set 100 shrinks towards and below the memory and buffer pool sizes. 0 5 10 15 20 Working Set Size (GB) Figure 1: Index lookup performance with in- 1. INTRODUCTION memory vs. traditional database. Database systems that use a buffer pool to hold in-memory copies of the working data enjoy a number of benefits. They can very efficiently manage working sets that far exceed Figure 1 illustrates the impact of the buffer pool's over- available memory. They offer natural support for write- heads, comparing the performance of an in-memory database ahead logging. They are somewhat insulated from cache using direct pointers between B-tree nodes (marked \Main Memory") and a database system using a traditional buffer ∗Work done while at HP Labs. pool with disk pages (marked \Traditional Buffer Pool"). The available memory is 10 GB; further details of this ex- periment are provided in Section 5. In the left half, the This work is licensed under the Creative Commons Attribution- NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li- entire working set fits into the available physical memory cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per- and buffer pool. In the right half, the working set exceeds mission prior to any use beyond those covered by the license. Contact the available memory and spills to the disk. The in-memory copyright holder by emailing [email protected]. Articles from this volume database relies on the OS virtual memory mechanism to sup- were invited to present their results at the 41st International Conference on port working sets larger than the available physical memory. Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast, The in-memory database permits substantially faster index Hawaii. Proceedings of the VLDB Endowment, Vol. 8, No. 1 look-ups than the traditional buffer pool when the working Copyright 2014 VLDB Endowment 2150-8097/14/09. set fits in physical memory. In fact, our experiments show 37 that an in-memory database improves throughput by be- our approach is entirely automatic and it adapts to cases tween 41% to 68% compared to one that uses a traditional of growing and shrinking working sets. As the raison d'etre buffer pool. This correlates well with earlier results that of such systems is to provide superior performance for in- the buffer pool takes about 30% of the execution cycles in memory workloads, most of these do not support data sets traditional transaction processing databases [14]. that do not fit in memory. We borrow the technique of pointer swizzling and adapt For instance, Microsoft's SQL Server Hekaton stores raw it to the context of page-oriented data stores, selectively memory addresses as pointers, eliminating the need for data replacing identifiers of pages persisted in storage with direct pages and indirection by page IDs. However, once the work- references to the memory locations of the page images. Our ing set size exceeds the available amount of memory, Heka- techniques enable a data store that uses a buffer pool to ton simply stops inserting rows [1]. achieve practically the same performance as an in-memory One possible solution is to rely on the VM layer to deal database. The research contributions here thus include: with any spills out of memory. For instance, some databases (such as Tokyo Cabinet) simply mmap their backing store [6]. 1. Introduction of pointer swizzling in database buffer This leads to several problems. The first is that the OS pool management. VM layer is particularly poor at making eviction decisions 2. Specification and analysis of swizzling and un-swizzling for transactional workloads (as we show later in our exper- techniques for the specific case of B-tree indexes. iments). The second is that the operating system consid- ers itself free to flush dirty pages opportunistically, with- 3. Victim selection (replacement policy) guiding eviction out notifying the application. This can cause data integrity and un-swizzling of B-tree pages from the buffer pool. problems when a page dirtied by an in-flight transaction is written back without the matching log records. 4. Experimental proof that these simple techniques en- Failure atomic msync [35] provides a mechanism by which able a database with a buffer pool to achieve in-memory 1) the kernel is prevented from lazily flushing pages, and 2) database performance when the working set fits in a modification to the msync call allows users to select a sub- memory, and furthermore achieve a continuum with set of pages to be written out atomically. Although this graceful degradation as the working set size exceeds certainly helps, it is insufficient for a transaction process- the memory size. ing system. First, failure atomic msync does not provide In the remainder of this paper, we first discuss prior efforts parallelism. From contact with the authors, failure atomic to improve the performance of in-memory database systems msync \only gives A and D . we provide no support for iso- with regard to memory limitations as well as prior work in lation. If you want safe, concurrent, database-style transac- pointer swizzling (Section 2). We next describe the problem tions, you need more" [34]. Second, as implemented, failure being solved (Section 3), and then present details of our atomic msync hijacks the file system journaling mechanism, techniques for swizzling and un-swizzling within a database duplicating each page write. Unlike a traditional buffer pool buffer pool (Section 4). We evaluate the performance of based system where changing a single row causes a few bytes our solution using an implementation (Section 5) and finally of log writes and a page-sized in-place update, a system present our conclusions from the work to-date (Section 6). based on failure atomic msync incurs a minimum of two page-sized writes, a significant performance penalty. 2. RELATED WORK There are a small number of recent efforts that make VM- based in-memory databases performant when the working This paper describes our efforts to adapt the known tech- data set almost fits in memory. These systems address the nique of pointer swizzling to the new context of making problem of swapping by either explicitly moving some data disk-based systems competitive with in-memory database records to virtual memory pages that the OS can then swap systems. This section begins by discussing prior work that to disk more intelligently or else by explicitly compressing addresses the problem of how to preserve the performance less-frequently accessed data records so as to reduce the of in-memory database systems when the working set does space consumed, but also reducing access speed. not quite fit in the available amount of memory. These prior Stoica and Ailamaki profiled the performance of the state- systems do not consider how to match the performance of a of-the-art in-memory VoltDB database, and found that per- traditional database when disk I/O is the bottleneck. Our formance dropped precipitously when the working data set design, on the other hand, enables a traditional database exceeded available memory [37]. Their work demonstrated system that has been optimized for disk I/O to compete that by intelligently controlling which tuples are swapped with in-memory systems when the working data set fits in- out by the operating system and which are kept in memory, memory. Thus, the second half of this section discusses prior it is possible to make much more effective use of available work on pointer swizzling, which is the technique we lever- memory. To achieve this, two regions of memory are created age to eliminate buffer pool overheads.
Recommended publications
  • Efficient Support of Position Independence on Non-Volatile Memory
    Efficient Support of Position Independence on Non-Volatile Memory Guoyang Chen Lei Zhang Richa Budhiraja Qualcomm Inc. North Carolina State University Qualcomm Inc. [email protected] Raleigh, NC [email protected] [email protected] Xipeng Shen Youfeng Wu North Carolina State University Intel Corp. Raleigh, NC [email protected] [email protected] ABSTRACT In Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017, This paper explores solutions for enabling efficient supports of 13 pages. https://doi.org/10.1145/3123939.3124543 position independence of pointer-based data structures on byte- addressable None-Volatile Memory (NVM). When a dynamic data structure (e.g., a linked list) gets loaded from persistent storage into 1 INTRODUCTION main memory in different executions, the locations of the elements Byte-Addressable Non-Volatile Memory (NVM) is a new class contained in the data structure could differ in the address spaces of memory technologies, including phase-change memory (PCM), from one run to another. As a result, some special support must memristors, STT-MRAM, resistive RAM (ReRAM), and even flash- be provided to ensure that the pointers contained in the data struc- backed DRAM (NV-DIMMs). Unlike on DRAM, data on NVM tures always point to the correct locations, which is called position are durable, despite software crashes or power loss. Compared to independence. existing flash storage, some of these NVM technologies promise This paper shows the insufficiency of traditional methods in sup- 10-100x better performance, and can be accessed via memory in- porting position independence on NVM. It proposes a concept called structions rather than I/O operations.
    [Show full text]
  • English Arabic Technical Computing Dictionary
    English Arabic Technical Computing Dictionary Arabeyes Arabisation Team http://wiki.arabeyes.org/Technical Dictionary Versin: 0.1.29-04-2007 April 29, 2007 This is a compilation of the Technical Computing Dictionary that is under development at Arabeyes, the Arabic UNIX project. The technical dictionary aims to to translate and standardise technical terms that are used in software. It is an effort to unify the terms used across all Open Source projects and to present the user with consistant and understandable interfaces. This work is licensed under the FreeBSD Documentation License, the text of which is available at the back of this document. Contributors are welcome, please consult the URL above or contact [email protected]. Q Ì ÉJ ªË@ éÒ¢@ Ñ«YË QK AK.Q« ¨ðQåÓ .« èQK ñ¢ ÕæK ø YË@ úæ®JË@ úGñAm '@ ñÓA®ÊË éj èYë . l×. @QK. éÔg. QK ú¯ éÊÒªJÖÏ@ éJ J®JË@ HAjÊ¢Ö Ï@ YJ kñKð éÔg. QK úÍ@ ñÓA®Ë@ ¬YîE .ºKñJ ËAK. éîD J.Ë@ ÐYjJÒÊË éÒj. Óð éÓñê®Ó H. ñAg éêk. @ð Õç'Y®JË ð á ÔgQÖÏ@ á K. H. PAJË@ øXA®JË ,H. ñAmÌ'@ . ¾JÖ Ï .ñÓA®Ë@ éK AîE ú ¯ èQ¯ñJÖÏ@ ð ZAKñÊË ø X @ ú G. ø Q¯ ékP ù ë ñÓA®Ë@ ékP . éJ K.QªËAK. ÕÎ @ [email protected] . úΫ ÈAB@ ð@ èC«@ à@ñJªË@ úÍ@ H. AëYË@ ZAg. QË@ ,á ÒëAÖÏ@ ɾK. I. kQK A Abortive release êm .× (ú¾J.) ¨A¢®K@ Abort Aêk . @ Abscissa ú æJ Absolute address Ê¢Ó à@ñ J« Absolute pathname Ê¢Ó PAÓ Õæ @ Absolute path Ê¢Ó PAÓ Absolute Ê¢Ó Abstract class XQm.× ­J Abstract data type XQm.× HA KAJ K.
    [Show full text]
  • Database : a Toolkit for Constructing Memory Mapped Databases Peter A
    Database : A Toolkit for Constructing Memory Mapped Databases Peter A. Buhr, Anil K. Goel and Anderson Wai Dept. of Computer Science, University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 Abstract The main objective of this work was an ef®cient methodology for constructing low-level database tools that are built around a single-level store implemented using memory mapping. The methodology allowed normal programming pointers to be stored directly onto secondary storage, and subsequently retrieved and manipulated by other programs without the need for relocation, pointer swizzling or reading all the data. File structures for a database, e.g. a B- Tree, built using this approach are signi®cantly simpler to build, test, and maintain than traditional ®le structures. All access methods to the ®le structure are statically type-safe and ®le structure de®nitions can be generic in the type of the record and possibly key(s) stored in the ®le structure, which affords signi®cant code reuse. An additional design requirement is that multiple ®le structures may be simultaneously accessible by an application. Concurrency at both the front end (multiple accessors) and the back end (®le structure partitioned over multiple disks) are possible. Finally, experimental results between traditional and memory mapped ®les structures show that performance of a memory mapped ®le structure is as good or better than the traditional approach. 1 Introduction The main objective of this work was an ef®cient methodology for constructing low-level database tools that are built around a single-level store. A single-level store gives the illusion that data on disk (secondary storage) is accessible in the same way as data in main memory (primary storage), which is analogous to the goals of virtual memory.
    [Show full text]
  • Exact Positioning of Data Approach to Memory Mapped Persistent Stores: Design, Analysis and Modelling
    Exact Positioning of Data Approach to Memory Mapped Persistent Stores: Design, Analysis and Modelling by Anil K. Goel A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Computer Science Waterloo, Ontario, Canada, 1996 c Anil K. Goel 1996 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or indi- viduals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by photocopy- ing or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. iii The University of Waterloo requires the signatures of all persons using or photocopy- ing this thesis. Please sign below, and give address and date. v Abstract One of the primary functions of computers is to store information, i.e., to deal with long lived or persistent data. Programmers working with persistent data structures are faced with the problem that there are two, mostly incompatible, views of structured data, namely data in primary and secondary storage. Traditionally, these two views of data have been dealt with independently by researchers in the programming language and database communities. Significant research has occurred over the last decade on efficient and easy-to-use methods for manipulating persistent data structures in a fashion that makes the sec- ondary storage transparent to the programmer. Merging primary and secondary storage in this manner produces a single-level store, which gives the illusion that data on sec- ondary storage is accessible in the same way as data in primary storage.
    [Show full text]
  • Leanstore: In-Memory Data Management Beyond Main Memory
    LeanStore: In-Memory Data Management Beyond Main Memory Viktor Leis, Michael Haubenschild∗, Alfons Kemper, Thomas Neumann Technische Universitat¨ Munchen¨ Tableau Software∗ fleis,kemper,[email protected] [email protected]∗ Abstract—Disk-based database systems use buffer managers 60K in order to transparently manage data sets larger than main 40K memory. This traditional approach is effective at minimizing the number of I/O operations, but is also the major source of 20K overhead in comparison with in-memory systems. To avoid this TPC-C [txns/s] 0 overhead, in-memory database systems therefore abandon buffer BerkeleyDB LeanStore in-memoryWiredTiger management altogether, which makes handling data sets larger Fig. 1. Single-threaded in-memory TPC-C performance (100 warehouses). than main memory very difficult. In this work, we revisit this fundamental dichotomy and design Two representative proposals for efficiently managing larger- a novel storage manager that is optimized for modern hardware. Our evaluation, which is based on TPC-C and micro benchmarks, than-RAM data sets in main-memory systems are Anti- shows that our approach has little overhead in comparison Caching [7] and Siberia [8], [9], [10]. In comparison with a with a pure in-memory system when all data resides in main traditional buffer manager, these approaches exhibit one major memory. At the same time, like a traditional buffer manager, weakness: They are not capable of maintaining a replacement it is fully transparent and can manage very large data sets strategy over relational and index data. Either the indexes, effectively. Furthermore, due to low-overhead synchronization, our implementation is also highly scalable on multi-core CPUs.
    [Show full text]
  • A Survey of B-Tree Logging and Recovery Techniques
    1 A Survey of B-Tree Logging and Recovery Techniques GOETZ GRAEFE, Hewlett-Packard Laboratories B-trees have been ubiquitous in database management systems for several decades, and they serve in many other storage systems as well. Their basic structure and their basic operations are well understood including search, insertion, and deletion. However, implementation of transactional guarantees such as all-or-nothing failure atomicity and durability in spite of media and system failures seems to be difficult. High-performance techniques such as pseudo-deleted records, allocation-only logging, and transaction processing during crash recovery are widely used in commercial B-tree implementations but not widely understood. This survey collects many of these techniques as a reference for students, researchers, system architects, and software developers. Central in this discussion are physical data independence, separation of logical database contents and physical representation, and the concepts of user transactions and system transactions. Many of the techniques discussed are applicable beyond B-trees. Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—Recovery and restart; H.2.4 [Database Management]: Systems—Transaction Processing; H.3.0 [Information Storage and Retrieval]: General General Terms: Algorithms ACM Reference Format: Graefe, G. 2012. A survey of B-tree logging and recovery techniques. ACM Trans. Datab. Syst. 37, 1, Article 1 (February 2012), 35 pages. DOI = 10.1145/2109196.2109197 http://doi.acm.org/10.1145/2109196.2109197 1. INTRODUCTION B-trees [Bayer and McCreight 1972] are primary data structures not only in databases but also in information retrieval, file systems, key-value stores, and many application- specific indexes.
    [Show full text]
  • R-Code a Very Capable Virtual Computer
    R-Code a Very Capable Virtual Computer The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Walton, Robert Lee. 1995. R-Code a Very Capable Virtual Computer. Harvard Computer Science Group Technical Report TR-37-95. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506458 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RCo de a Very Capable Virtual Computer Rob ert Lee Walton TR Octob er Center for Research in Computing Technology Harvard University Cambridge Massachusetts RCODE A Very Capable Virtual Computer A thesis presented by Rob ert Lee Walton to The Division of Applied Sciences in partial fulllment of the requirements for the degree of Do ctor of Philosophy in the sub ject of Computer Science Harvard University Cambridge Massachusetts Octob er c by Rob ert Lee Walton All rights reserved iii ABSTRACT This thesis investigates the design of a machine indep endent virtual computer the R CODE computer for use as a target by high level language compilers Unlike previous machine indep endent targets RCODE provides higher level capabilities such as a garbage collecting memory manager tagged data type maps array descriptors register dataow semantics and a shared ob ject memory Emphasis is on trying to nd universal versions of these
    [Show full text]
  • Lazy Reference Counting for Transactional Storage Systems
    Lazy Reference Counting for Transactional Storage Systems Miguel Castro, Atul Adya, Barbara Liskov Lab oratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139 fcastro,adya,[email protected] Abstract ing indirection table entries in an indirect pointer swizzling scheme. Hac isanovel technique for managing the client cache Pointer swizzling [11 ] is a well-established tech- in a distributed, p ersistent ob ject storage system. In a companion pap er, we showed that it outp erforms nique to sp eed up p ointer traversals in ob ject- other techniques across a wide range of cache sizes oriented databases. For ob jects in the client cache, and workloads. This rep ort describ es Hac's solution it replaces contained global ob ject names by vir- to a sp eci c problem: how to discard indirection table tual memory p ointers, therebyavoiding the need to entries in an indirect pointer swizzling scheme. Hac uses translate the ob ject name to a p ointer every time a lazy reference counting to solve this problem. Instead reference is used. Pointer swizzling schemes can b e of eagerly up dating reference counts when ob jects are classi ed as direct [13 ] or indirect [11 , 10 ]. In direct mo di ed and eagerly freeing unreferenced entries, which schemes, swizzled p ointers p oint directly to an ob- can b e exp ensive, we p erform these op erations lazily in the background while waiting for replies to fetch and ject, whereas in indirect schemes swizzled p ointers commit requests. Furthermore, weintro duce a number p oint to an indirection table entry that contains of additionaloptimizations to reduce the space and time a p ointer to the ob ject.
    [Show full text]
  • Providing Persistent Objects in Distributed Systems
    Providing Persistent Objects in Distributed Systems Barbara Liskov, Miguel Castro, Liuba Shrira , Atul Adya Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139 g fliskov,castro,liuba,adya @lcs.mit.edu Abstract. THOR is a persistent object store that provides a powerful programming model. THOR ensures that persistent objects are accessed only by calling their methods and it supports atomic transactions. The result is a system that allows applications to share objects safely across both space and time. The paper describes how the THOR implementation is able to support this pow- erful model and yet achieve good performance, even in a wide-area, large-scale distributed environment. It describes the techniques used in THOR to meet the challenge of providing good performance in spite of the need to manage very large numbers of very small objects. In addition, the paper puts the performance of THOR in perspective by showing that it substantially outperforms a system based on memory mapped files, even though that system provides much less functionality than THOR. 1 Introduction Persistent object stores provide a powerful programmingmodel for modern applications. Objects provide a simple and natural way to model complex data; they are the preferred approach to implementing systems today. A persistent object store decouples the object model from individual programs, effectively providing a persistent heap that can be shared by many different programs: objects in the heap survive and can be used by applications so long as they can be referenced. Such a system can guarantee safe sharing, ensuring that all programs that use a shared object use it in accordance with its type (by calling its methods).
    [Show full text]
  • Address Translation Strategies in the Texas Persistent Store
    THE ADVANCED COMPUTING SYSTEMS ASSOCIATION The following paper was originally published in the 5th USENIX Conference on Object-Oriented Technologies and Systems (COOTS '99) San Diego, California, USA, May 3–7, 1999 Address Translation Strategies in the Texas Persistent Store Sheetal V. Kakkad Somerset Design Center, Motorola Paul R. Wilson University of Texas at Austin © 1999 by The USENIX Association All Rights Reserved Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Address Translation Strategies in the Texas Persistent Store y Sheetal V. Kakkad Paul R. Wilson Somerset Design Center Department of Computer Sciences Motorola The University of Texas at Austin Austin, Texas, USA Austin, Texas, USA [email protected] [email protected] Abstract Texas using the C++ smart pointer idiom, allowing pro- grammers to choose the kind of pointer used for any data member in a particular class definition. This ap- Texas is a highly portable, high-performance persistent proach maintains the important features of the system: object store that can be used with conventional compil- persistence that is orthogonal to type, high performance ers and operating systems, without the need for a prepro- with standard compilers and operating systems, suitabil- cessor or special operating system privileges. Texas uses ity for huge shared address spaces across heterogeneous pointer swizzling at page fault time as its primary ad- platforms, and the ability to optimize away pointer swiz- dress translation mechanism, translating addresses from zling costs when the persistent store is smaller than the a persistent format into conventional virtual addresses hardware-supported virtual address size.
    [Show full text]
  • Object-Oriented Recovery for Non-Volatile Memory
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Infoscience - École polytechnique fédérale de Lausanne 153 Object-Oriented Recovery for Non-volatile Memory NACHSHON COHEN, EPFL, Switzerland DAVID T. AKSUN, EPFL, Switzerland JAMES R. LARUS, EPFL, Switzerland New non-volatile memory (NVM) technologies enable direct, durable storage of data in an application’s heap. Durable, randomly accessible memory facilitates the construction of applications that do not lose data at system shutdown or power failure. Existing NVM programming frameworks provide mechanisms to consistently capture a running application’s state. They do not, however, fully support object-oriented languages or ensure that the persistent heap is consistent with the environment when the application is restarted. In this paper, we propose a new NVM language extension and runtime system that supports object- oriented NVM programming and avoids the pitfalls of prior approaches. At the heart of our technique is object reconstruction, which transparently restores and reconstructs a persistent object’s state during program restart. It is implemented in NVMReconstruction, a Clang/LLVM extension and runtime library that provides: (i) transient fields in persistent objects, (ii) support for virtual functions and function pointers, (iii) direct representation of persistent pointers as virtual addresses, and (iv) type-specific reconstruction of a persistent object during program restart. In addition, NVMReconstruction supports updating an application’s code, even if this causes objects to expand, by providing object migration. NVMReconstruction also can compact the persistent heap to reduce fragmentation. In experiments, we demonstrate the versatility and usability of object reconstruction and its low runtime performance cost.
    [Show full text]
  • Software Persistent Memory
    Software Persistent Memory Jorge Guerra, Leonardo M´armol, Daniel Campello, Carlos Crespo, Raju Rangaswami, Jinpeng Wei Florida International University {jguerra, lmarm001, dcamp020, ccres008, raju, weijp}@cs.fiu.edu Abstract translators increase overhead along the data path. Most Persistence of in-memory data is necessary for many importantly, all of these solutions require substantial ap- classes of application and systems software. We pro- plication involvement for making data persistent which pose Software Persistent Memory (SoftPM), a new mem- ultimately increases code complexity affecting reliabil- ory abstraction which allows malloc style allocations ity, portability, and maintainability. to be selectively made persistent with relative ease. In this paper, we present Software Persistent Mem- Particularly, SoftPM’s persistent containers implement ory (SoftPM), a lightweight persistent memory abstrac- automatic, orthogonal persistence for all in-memory tion for C. SoftPM provides a novel form of orthogo- data reachable from a developer-defined root structure. nal persistence [8], whereby the persistence of data (the Writing new applications or adapting existing applica- how) is seamless to the developer, while allowing effort- tions to use SoftPM only requires identifying such root less control over when and what data persists. To use structures within the code. We evaluated the correct- SoftPM, developers create one or more persistent con- ness, ease of use, and performance of SoftPM using tainers to house a subset of in-memory data that they a suite of microbenchmarks and real world applica- wish to make persistent. They only need to ensure that tions including a distributed MPI application, SQLite (an a container’s root structure houses pointers to the data in-memory database), and memcachedb (a distributed structures they wish to make persistent (e.g.
    [Show full text]