THE ADVANCED COMPUTING SYSTEMS ASSOCIATION The following paper was originally published in the 5th USENIX Conference on Object-Oriented Technologies and Systems (COOTS '99) San Diego, California, USA, May 3–7, 1999 Address Translation Strategies in the Texas Persistent Store Sheetal V. Kakkad Somerset Design Center, Motorola Paul R. Wilson University of Texas at Austin © 1999 by The USENIX Association All Rights Reserved Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email:
[email protected] WWW: http://www.usenix.org Address Translation Strategies in the Texas Persistent Store y Sheetal V. Kakkad Paul R. Wilson Somerset Design Center Department of Computer Sciences Motorola The University of Texas at Austin Austin, Texas, USA Austin, Texas, USA
[email protected] [email protected] Abstract Texas using the C++ smart pointer idiom, allowing pro- grammers to choose the kind of pointer used for any data member in a particular class definition. This ap- Texas is a highly portable, high-performance persistent proach maintains the important features of the system: object store that can be used with conventional compil- persistence that is orthogonal to type, high performance ers and operating systems, without the need for a prepro- with standard compilers and operating systems, suitabil- cessor or special operating system privileges. Texas uses ity for huge shared address spaces across heterogeneous pointer swizzling at page fault time as its primary ad- platforms, and the ability to optimize away pointer swiz- dress translation mechanism, translating addresses from zling costs when the persistent store is smaller than the a persistent format into conventional virtual addresses hardware-supported virtual address size.